
Origin at 2 m m
Asymmetric unit | 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2 |
For (0, 0)+ set
(1) 1 | (2) 2 0, 0 | (3) m 0, y | (4) m x, 0 |
For (1/2, 1/2)+ set
(1) t(1/2, 1/2) | (2) 2 1/4, 1/4 | (3) b 1/4, y | (4) a x, 1/4 |
Generators selected (1); t(1, 0); t(0, 1); t(1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| (0, 0)+ (1/2, 1/2)+ | General:
|
| (1) x, y | (2) -x, -y | (3) -x, y | (4) x, -y |
| hk : h + k = 2n h0 : h = 2n 0k : k = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| | hk : h = 2n
|
| | no extra conditions |
| | no extra conditions |
Maximal non-isomorphic subgroups
I | [2] c1m1 (cm, 5) | (1; 3)+ |
| [2] c11m (cm, 5) | (1; 4)+ |
| [2] c211 (p2, 2) | (1; 2)+ |
IIa | [2] p2gg (8) | 1; 2; (3; 4) + (1/2, 1/2) |
| [2] p2gm (p2mg, 7) | 1; 4; (2; 3) + (1/2, 1/2) |
| [2] p2mg (7) | 1; 3; (2; 4) + (1/2, 1/2) |
| [2] p2mm (6) | 1; 2; 3; 4 |
Maximal isomorphic subgroups of lowest index
IIc | [3] c2mm (a' = 3a or b' = 3b) (9) |
Minimal non-isomorphic supergroups
I | [2] p4mm (11); [2] p4gm (12); [3] p6mm (17) |
II | [2] p2mm(a' = 1/2a, b' = 1/2b) (6) |