
Origin at 2 1 21
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2(0, 0, 1/2) 0, 0, z | (3) 2 0, y, 1/4 | (4) 2 x, 0, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z + 1/2 | (3) -x, y, -z + 1/2 | (4) x, -y, -z |
| 00l : l = 2n
|
| | Special: as above, plus
|
| | h0l : l = 2n
|
| | h0l : l = 2n
|
| | 0kl : l = 2n
|
| | 0kl : l = 2n
|
Symmetry of special projections
Along [001] p2mm a' = a b' = b Origin at 0, 0, z | Along [100] p2gm a' = b b' = c Origin at x, 0, 0 | Along [010] p2mg a' = c b' = a Origin at 0, y, 1/4 |
Maximal non-isomorphic subgroups
I | | [2] P1121 (P21, 4) | 1; 2 |
| | [2] P121 (P2, 3) | 1; 3 |
| | [2] P211 (P2, 3) | 1; 4 |
IIb | [2] P21221 (a' = 2a) (P21212, 18); [2] P22121 (b' = 2b) (P21212, 18); [2] C2221 (a' = 2a, b' = 2b) (20) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P2221 (a' = 2a or b' = 2b) (17); [3] P2221 (c' = 3c) (17) |
Minimal non-isomorphic supergroups
I | [2] Pmma (51); [2] Pnna (52); [2] Pmna (53); [2] Pcca (54); [2] P4122 (91); [2] P4322 (95) |
II | [2] C2221 (20); [2] A222 (C222, 21); [2] B222 (C222, 21); [2] I212121 (24); [2] P222 (c' = 1/2c) (16) |