C2221 D25 222 Orthorhombic info
No. 20 C2221 Patterson symmetry Cmmm

symmetry group diagram

Origin at 2 1 21

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry operations

For (0, 0, 0)+ set

(1)  1   (2)  2(0, 0, 1/2)   0, 0, z(3)  2   0, y1/4(4)  2   x, 0, 0

For (1/21/2, 0)+ set

(1)  t(1/21/2, 0)   (2)  2(0, 0, 1/2)   1/41/4z(3)  2(0, 1/2, 0)   1/4y1/4(4)  2(1/2, 0, 0)   x1/4, 0

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/2, 0); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 (0, 0, 0)+  (1/21/2, 0)+  General:
8 c 1
(1) xyz(2) -x-yz + 1/2(3) -xy-z + 1/2(4) x-y-z
hkl : h + k = 2n
0kl : k = 2n
h0l : h = 2n
hk0 : h + k = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
4 b  . 2 . 
0, y1/4 0, -y3/4
h0l : l = 2n
4 a  2 . . 
x, 0, 0 -x, 0, 1/2
0kl : l = 2n

Symmetry of special projections

Along [001]   c2mm
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   p2gm
a' = 1/2b   b' = c   
Origin at x, 0, 0
Along [010]   p2mg
a' = c   b' = 1/2a   
Origin at 0, y1/4

Maximal non-isomorphic subgroups

I [2] C121 (C2, 5)(1; 3)+
  [2] C211 (C2, 5)(1; 4)+
  [2] C1121 (P21, 4)(1; 2)+
IIa [2] P212121 (19)1; 2; (3; 4) + (1/21/2, 0)
  [2] P21221 (P21212, 18)1; 3; (2; 4) + (1/21/2, 0)
  [2] P22121 (P21212, 18)1; 4; (2; 3) + (1/21/2, 0)
  [2] P2221 (17)1; 2; 3; 4
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] C2221 (a' = 3a or b' = 3b) (20); [3] C2221 (c' = 3c) (20)

Minimal non-isomorphic supergroups

I[2] Cmcm (63); [2] Cmce (64); [2] P4122 (91); [2] P41212 (92); [2] P4322 (95); [2] P43212 (96); [3] P6122 (178); [3] P6522 (179); [3] P6322 (182)
II[2] F222 (22); [2] P2221 (a' = 1/2a, b' = 1/2b) (17); [2] C222 (c' = 1/2c) (21)








































to end of page
to top of page