Origin at 2 2 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, 0, z | (3) 2 0, y, 0 | (4) 2 x, 0, 0 |
For (1/2, 1/2, 1/2)+ set
(1) t(1/2, 1/2, 1/2) | (2) 2(0, 0, 1/2) 1/4, 1/4, z | (3) 2(0, 1/2, 0) 1/4, y, 1/4 | (4) 2(1/2, 0, 0) x, 1/4, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -x, y, -z | (4) x, -y, -z |
| hkl : h + k + l = 2n 0kl : k + l = 2n h0l : h + l = 2n hk0 : h + k = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] c2mm a' = a b' = b Origin at 0, 0, z | Along [100] c2mm a' = b b' = c Origin at x, 0, 0 | Along [010] c2mm a' = c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] I112 (C2, 5) | (1; 2)+ |
| | [2] I121 (C2, 5) | (1; 3)+ |
| | [2] I211 (C2, 5) | (1; 4)+ |
IIa | | [2] P21212 (18) | 1; 2; (3; 4) + (1/2, 1/2, 1/2) |
| | [2] P21221 (P21212, 18) | 1; 3; (2; 4) + (1/2, 1/2, 1/2) |
| | [2] P22121 (P21212, 18) | 1; 4; (2; 3) + (1/2, 1/2, 1/2) |
| | [2] P222 (16) | 1; 2; 3; 4 |
Maximal isomorphic subgroups of lowest index
IIc | [3] I222 (a' = 3a or b' = 3b or c' = 3c) (23) |
Minimal non-isomorphic supergroups
I | [2] Immm (71); [2] Ibam (72); [2] I422 (97); [2] I-42m (121); [3] I23 (197) |
II | [2] A222 (a' = 1/2a) (C222, 21); [2] B222 (b' = 1/2b) (C222, 21); [2] C222 (c' = 1/2c) (21) |