Pcc2 C2v3 mm2 Orthorhombic info
No. 27 Pcc2 Patterson symmetry Pmmm

symmetry group diagram

Origin on c c 2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

(1)  1   (2)  2   0, 0, z(3)  c   x, 0, z(4)  c   0, yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x-yz(3) x-yz + 1/2(4) -xyz + 1/2
0kl : l = 2n
h0l : l = 2n
00l : l = 2n
    Special: as above, plus
2 d  . . 2 
1/21/2z 1/21/2z + 1/2
hkl : l = 2n
2 c  . . 2 
1/2, 0, z 1/2, 0, z + 1/2
hkl : l = 2n
2 b  . . 2 
0, 1/2z 0, 1/2z + 1/2
hkl : l = 2n
2 a  . . 2 
0, 0, z 0, 0, z + 1/2
hkl : l = 2n

Symmetry of special projections

Along [001]   p2mm
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   p1m1
a' = b   b' = 1/2c   
Origin at x, 0, 0
Along [010]   p11m
a' = 1/2c   b' = a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] P1c1 (Pc, 7)1; 3
  [2] Pc11 (Pc, 7)1; 4
  [2] P112 (P2, 3)1; 2
IIa none
IIb[2] Pcn2 (a' = 2a) (Pnc2, 30); [2] Pnc2 (b' = 2b) (30); [2] Ccc2 (a' = 2ab' = 2b) (37)

Maximal isomorphic subgroups of lowest index

IIc[2] Pcc2 (a' = 2a or b' = 2b) (27); [3] Pcc2 (c' = 3c) (27)

Minimal non-isomorphic supergroups

I[2] Pccm (49); [2] Pcca (54); [2] Pccn (56); [2] P42cm (101); [2] P4cc (103); [2] P-4c2 (116)
II[2] Ccc2 (37); [2] Aem2 (39); [2] Bme2 (Aem2, 39); [2] Iba2 (45); [2] Pmm2 (c' = 1/2c) (25)








































to end of page
to top of page