Ama2 C2v16 mm2 Orthorhombic info
No. 40 Ama2 Patterson symmetry Ammm (Cmmm)

symmetry group diagram

Origin on 1 a 2

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

For (0, 0, 0)+ set

(1)  1   (2)  2   0, 0, z(3)  a   x, 0, z(4)  m   1/4yz

For (0, 1/21/2)+ set

(1)  t(0, 1/21/2)   (2)  2(0, 0, 1/2)   0, 1/4z(3)  n(1/2, 0, 1/2)   x1/4z(4)  n(0, 1/21/2)   1/4yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/21/2); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 (0, 0, 0)+  (0, 1/21/2)+  General:
8 c 1
(1) xyz(2) -x-yz(3) x + 1/2-yz(4) -x + 1/2yz
hkl : k + l = 2n
0kl : k + l = 2n
h0l : hl = 2n
hk0 : k = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
4 b  m . . 
1/4yz 3/4-yz
no extra conditions
4 a  . . 2 
0, 0, z 1/2, 0, z
hkl : h = 2n

Symmetry of special projections

Along [001]   p2mg
a' = a   b' = 1/2b   
Origin at 0, 0, z
Along [100]   c1m1
a' = b   b' = c   
Origin at x, 0, 0
Along [010]   p11m
a' = 1/2c   b' = 1/2a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] A1a1 (Cc, 9)(1; 3)+
  [2] Am11 (Pm, 6)(1; 4)+
  [2] A112 (C2, 5)(1; 2)+
IIa [2] Pnn2 (34)1; 2; (3; 4) + (0, 1/21/2)
  [2] Pna21 (33)1; 3; (2; 4) + (0, 1/21/2)
  [2] Pmn21 (31)1; 4; (2; 3) + (0, 1/21/2)
  [2] Pma2 (28)1; 2; 3; 4
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] Ama2 (a' = 3a) (40); [3] Ama2 (b' = 3b) (40); [3] Ama2 (c' = 3c) (40)

Minimal non-isomorphic supergroups

I[2] Cmcm (63); [2] Cccm (66); [3] P-6c2 (188); [3] P-62c (190)
II[2] Fmm2 (42); [2] Pma2 (b' = 1/2b, c' = 1/2c) (28); [2] Amm2 (a' = 1/2a) (38)








































to end of page
to top of page