Origin at 2 2 2, at 1/4, 1/4, 1/4 from -1
Asymmetric unit | 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2 0, 0, z | (3) 2 0, y, 0 | (4) 2 x, 0, 0 |
(5) -1 1/4, 1/4, 1/4 | (6) n(1/2, 1/2, 0) x, y, 1/4 | (7) n(1/2, 0, 1/2) x, 1/4, z | (8) n(0, 1/2, 1/2) 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -x, y, -z | (4) x, -y, -z | (5) -x + 1/2, -y + 1/2, -z + 1/2 | (6) x + 1/2, y + 1/2, -z + 1/2 | (7) x + 1/2, -y + 1/2, z + 1/2 | (8) -x + 1/2, y + 1/2, z + 1/2 |
| 0kl : k + l = 2n h0l : h + l = 2n hk0 : h + k = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| 0, 1/2, z | 0, 1/2, -z | 1/2, 0, -z + 1/2 | 1/2, 0, z + 1/2 |
| hkl : h + k + l = 2n
|
| 0, 0, z | 0, 0, -z | 1/2, 1/2, -z + 1/2 | 1/2, 1/2, z + 1/2 |
| hkl : h + k + l = 2n
|
| 1/2, y, 0 | 1/2, -y, 0 | 0, -y + 1/2, 1/2 | 0, y + 1/2, 1/2 |
| hkl : h + k + l = 2n
|
| 0, y, 0 | 0, -y, 0 | 1/2, -y + 1/2, 1/2 | 1/2, y + 1/2, 1/2 |
| hkl : h + k + l = 2n
|
| x, 0, 1/2 | -x, 0, 1/2 | -x + 1/2, 1/2, 0 | x + 1/2, 1/2, 0 |
| hkl : h + k + l = 2n
|
| x, 0, 0 | -x, 0, 0 | -x + 1/2, 1/2, 1/2 | x + 1/2, 1/2, 1/2 |
| hkl : h + k + l = 2n
|
| 3/4, 3/4, 3/4 | 1/4, 1/4, 3/4 | 1/4, 3/4, 1/4 | 3/4, 1/4, 1/4 |
| hkl : h + k, h + l, k + l = 2n
|
| 1/4, 1/4, 1/4 | 3/4, 3/4, 1/4 | 3/4, 1/4, 3/4 | 1/4, 3/4, 3/4 |
| hkl : h + k, h + l, k + l = 2n
|
| | hkl : h + k + l = 2n
|
| | hkl : h + k + l = 2n
|
| | hkl : h + k + l = 2n
|
| | hkl : h + k + l = 2n
|
Symmetry of special projections
Along [001] c2mm a' = a b' = b Origin at 0, 0, z | Along [100] c2mm a' = b b' = c Origin at x, 0, 0 | Along [010] c2mm a' = c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] Pnn2 (34) | 1; 2; 7; 8 |
| | [2] Pn2n (Pnn2, 34) | 1; 3; 6; 8 |
| | [2] P2nn (Pnn2, 34) | 1; 4; 6; 7 |
| | [2] P222 (16) | 1; 2; 3; 4 |
| | [2] P112/n (P2/c, 13) | 1; 2; 5; 6 |
| | [2] P12/n1 (P2/c, 13) | 1; 3; 5; 7 |
| | [2] P2/n11 (P2/c, 13) | 1; 4; 5; 8 |
IIb | [2] Fddd (a' = 2a, b' = 2b, c' = 2c) (70) |
Maximal isomorphic subgroups of lowest index
IIc | [3] Pnnn (a' = 3a or b' = 3b or c' = 3c) (48) |
Minimal non-isomorphic supergroups
I | [2] P4/nnc (126); [2] P42/nnm (134); [3] Pn-3 (201) |
II | [2] Immm (71); [2] Amaa (Cccm, 66); [2] Bbmb (Cccm, 66); [2] Cccm (66); [2] Pncb (a' = 1/2a) (Pban, 50); [2] Pcna (b' = 1/2b) (Pban, 50); [2] Pban (c' = 1/2c) (50) |
Origin at -1 at n n n, at -1/4, -1/4, -1/4 from 2 2 2
Asymmetric unit | 0 ≤ x ≤ 1/4; -1/4 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2 1/4, 1/4, z | (3) 2 1/4, y, 1/4 | (4) 2 x, 1/4, 1/4 |
(5) -1 0, 0, 0 | (6) n(1/2, 1/2, 0) x, y, 0 | (7) n(1/2, 0, 1/2) x, 0, z | (8) n(0, 1/2, 1/2) 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x + 1/2, -y + 1/2, z | (3) -x + 1/2, y, -z + 1/2 | (4) x, -y + 1/2, -z + 1/2 | (5) -x, -y, -z | (6) x + 1/2, y + 1/2, -z | (7) x + 1/2, -y, z + 1/2 | (8) -x, y + 1/2, z + 1/2 |
| 0kl : k + l = 2n h0l : h + l = 2n hk0 : h + k = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| 1/4, 3/4, z | 1/4, 3/4, -z + 1/2 | 3/4, 1/4, -z | 3/4, 1/4, z + 1/2 |
| hkl : h + k + l = 2n
|
| 1/4, 1/4, z | 1/4, 1/4, -z + 1/2 | 3/4, 3/4, -z | 3/4, 3/4, z + 1/2 |
| hkl : h + k + l = 2n
|
| 3/4, y, 1/4 | 3/4, -y + 1/2, 1/4 | 1/4, -y, 3/4 | 1/4, y + 1/2, 3/4 |
| hkl : h + k + l = 2n
|
| 1/4, y, 1/4 | 1/4, -y + 1/2, 1/4 | 3/4, -y, 3/4 | 3/4, y + 1/2, 3/4 |
| hkl : h + k + l = 2n
|
| x, 1/4, 3/4 | -x + 1/2, 1/4, 3/4 | -x, 3/4, 1/4 | x + 1/2, 3/4, 1/4 |
| hkl : h + k + l = 2n
|
| x, 1/4, 1/4 | -x + 1/2, 1/4, 1/4 | -x, 3/4, 3/4 | x + 1/2, 3/4, 3/4 |
| hkl : h + k + l = 2n
|
| 0, 0, 0 | 1/2, 1/2, 0 | 1/2, 0, 1/2 | 0, 1/2, 1/2 |
| hkl : h + k, h + l, k + l = 2n
|
| 1/2, 1/2, 1/2 | 0, 0, 1/2 | 0, 1/2, 0 | 1/2, 0, 0 |
| hkl : h + k, h + l, k + l = 2n
|
| 1/4, 3/4, 1/4 | 3/4, 1/4, 3/4 |
| hkl : h + k + l = 2n
|
| 1/4, 1/4, 3/4 | 3/4, 3/4, 1/4 |
| hkl : h + k + l = 2n
|
| 3/4, 1/4, 1/4 | 1/4, 3/4, 3/4 |
| hkl : h + k + l = 2n
|
| 1/4, 1/4, 1/4 | 3/4, 3/4, 3/4 |
| hkl : h + k + l = 2n
|
Symmetry of special projections
Along [001] c2mm a' = a b' = b Origin at 1/4, 1/4, z | Along [100] c2mm a' = b b' = c Origin at x, 1/4, 1/4 | Along [010] c2mm a' = c b' = a Origin at 1/4, y, 1/4 |
Maximal non-isomorphic subgroups
I | | [2] Pnn2 (34) | 1; 2; 7; 8 |
| | [2] Pn2n (Pnn2, 34) | 1; 3; 6; 8 |
| | [2] P2nn (Pnn2, 34) | 1; 4; 6; 7 |
| | [2] P222 (16) | 1; 2; 3; 4 |
| | [2] P112/n (P2/c, 13) | 1; 2; 5; 6 |
| | [2] P12/n1 (P2/c, 13) | 1; 3; 5; 7 |
| | [2] P2/n11 (P2/c, 13) | 1; 4; 5; 8 |
IIb | [2] Fddd (a' = 2a, b' = 2b, c' = 2c) (70) |
Maximal isomorphic subgroups of lowest index
IIc | [3] Pnnn (a' = 3a or b' = 3b or c' = 3c) (48) |
Minimal non-isomorphic supergroups
I | [2] P4/nnc (126); [2] P42/nnm (134); [3] Pn-3 (201) |
II | [2] Immm (71); [2] Amaa (Cccm, 66); [2] Bbmb (Cccm, 66); [2] Cccm (66); [2] Pncb (a' = 1/2a) (Pban, 50); [2] Pcna (b' = 1/2b) (Pban, 50); [2] Pban (c' = 1/2c) (50) |