Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x + 1/2, -y + 1/2, z | (3) -x + 1/2, y, -z + 1/2 | (4) x, -y + 1/2, -z + 1/2 | (5) -x, -y, -z | (6) x + 1/2, y + 1/2, -z | (7) x + 1/2, -y, z + 1/2 | (8) -x, y + 1/2, z + 1/2 |
| 0kl : k + l = 2n h0l : h + l = 2n hk0 : h + k = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| 1/4, 3/4, z | 1/4, 3/4, -z + 1/2 | 3/4, 1/4, -z | 3/4, 1/4, z + 1/2 |
| hkl : h + k + l = 2n
|
| 1/4, 1/4, z | 1/4, 1/4, -z + 1/2 | 3/4, 3/4, -z | 3/4, 3/4, z + 1/2 |
| hkl : h + k + l = 2n
|
| 3/4, y, 1/4 | 3/4, -y + 1/2, 1/4 | 1/4, -y, 3/4 | 1/4, y + 1/2, 3/4 |
| hkl : h + k + l = 2n
|
| 1/4, y, 1/4 | 1/4, -y + 1/2, 1/4 | 3/4, -y, 3/4 | 3/4, y + 1/2, 3/4 |
| hkl : h + k + l = 2n
|
| x, 1/4, 3/4 | -x + 1/2, 1/4, 3/4 | -x, 3/4, 1/4 | x + 1/2, 3/4, 1/4 |
| hkl : h + k + l = 2n
|
| x, 1/4, 1/4 | -x + 1/2, 1/4, 1/4 | -x, 3/4, 3/4 | x + 1/2, 3/4, 3/4 |
| hkl : h + k + l = 2n
|
| 0, 0, 0 | 1/2, 1/2, 0 | 1/2, 0, 1/2 | 0, 1/2, 1/2 |
| hkl : h + k, h + l, k + l = 2n
|
| 1/2, 1/2, 1/2 | 0, 0, 1/2 | 0, 1/2, 0 | 1/2, 0, 0 |
| hkl : h + k, h + l, k + l = 2n
|
| 1/4, 3/4, 1/4 | 3/4, 1/4, 3/4 |
| hkl : h + k + l = 2n
|
| 1/4, 1/4, 3/4 | 3/4, 3/4, 1/4 |
| hkl : h + k + l = 2n
|
| 3/4, 1/4, 1/4 | 1/4, 3/4, 3/4 |
| hkl : h + k + l = 2n
|
| 1/4, 1/4, 1/4 | 3/4, 3/4, 3/4 |
| hkl : h + k + l = 2n
|