Origin at -1 on b 1 21
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
(1) 1 | (2) 2(0, 0, 1/2) 0, 0, z | (3) 2(0, 1/2, 0) 0, y, 1/4 | (4) 2 x, 1/4, 0 |
(5) -1 0, 0, 0 | (6) m x, y, 1/4 | (7) c x, 1/4, z | (8) b 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z + 1/2 | (3) -x, y + 1/2, -z + 1/2 | (4) x, -y + 1/2, -z | (5) -x, -y, -z | (6) x, y, -z + 1/2 | (7) x, -y + 1/2, z + 1/2 | (8) -x, y + 1/2, z |
| 0kl : k = 2n h0l : l = 2n 0k0 : k = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| x, y, 1/4 | -x, -y, 3/4 | -x, y + 1/2, 1/4 | x, -y + 1/2, 3/4 |
| no extra conditions |
| x, 1/4, 0 | -x, 3/4, 1/2 | -x, 3/4, 0 | x, 1/4, 1/2 |
| hkl : l = 2n
|
| 1/2, 0, 0 | 1/2, 0, 1/2 | 1/2, 1/2, 1/2 | 1/2, 1/2, 0 |
| hkl : k, l = 2n
|
| 0, 0, 0 | 0, 0, 1/2 | 0, 1/2, 1/2 | 0, 1/2, 0 |
| hkl : k, l = 2n
|
Symmetry of special projections
Along [001] p2gm a' = a b' = b Origin at 0, 0, z | Along [100] p2gm a' = 1/2b b' = c Origin at x, 0, 0 | Along [010] p2mm a' = 1/2c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] Pbc21 (Pca21, 29) | 1; 2; 7; 8 |
| | [2] P2cm (Pma2, 28) | 1; 4; 6; 7 |
| | [2] Pb21m (Pmc21, 26) | 1; 3; 6; 8 |
| | [2] P22121 (P21212, 18) | 1; 2; 3; 4 |
| | [2] P121/c1 (P21/c, 14) | 1; 3; 5; 7 |
| | [2] P2/b11 (P2/c, 13) | 1; 4; 5; 8 |
| | [2] P1121/m (P21/m, 11) | 1; 2; 5; 6 |
IIb | [2] Pbnm (a' = 2a) (Pnma, 62); [2] Pbca (a' = 2a) (61); [2] Pbna (a' = 2a) (Pbcn, 60) |
Maximal isomorphic subgroups of lowest index
IIc | [2] Pbcm (a' = 2a) (57); [3] Pbcm (b' = 3b) (57); [3] Pbcm (c' = 3c) (57) |
Minimal non-isomorphic supergroups
II | [2] Cmcm (63); [2] Bbem (Cmce, 64); [2] Aemm (Cmme, 67); [2] Ibam (72); [2] Pmcm (b' = 1/2b) (Pmma, 51); [2] Pbmm (c' = 1/2c) (Pmma, 51) |