Origin at 2 2 2, at -1/8, -1/8, -1/8 from -1
Asymmetric unit | 0 ≤ x ≤ 1/8; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, 0, z | (3) 2 0, y, 0 | (4) 2 x, 0, 0 |
(5) -1 1/8, 1/8, 1/8 | (6) d(1/4, 1/4, 0) x, y, 1/8 | (7) d(1/4, 0, 1/4) x, 1/8, z | (8) d(0, 1/4, 1/4) 1/8, y, z |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) 2(0, 0, 1/2) 0, 1/4, z | (3) 2(0, 1/2, 0) 0, y, 1/4 | (4) 2 x, 1/4, 1/4 |
(5) -1 1/8, 3/8, 3/8 | (6) d(1/4, 3/4, 0) x, y, 3/8 | (7) d(1/4, 0, 3/4) x, 3/8, z | (8) d(0, 3/4, 3/4) 1/8, y, z |
For (1/2, 0, 1/2)+ set
(1) t(1/2, 0, 1/2) | (2) 2(0, 0, 1/2) 1/4, 0, z | (3) 2 1/4, y, 1/4 | (4) 2(1/2, 0, 0) x, 0, 1/4 |
(5) -1 3/8, 1/8, 3/8 | (6) d(3/4, 1/4, 0) x, y, 3/8 | (7) d(3/4, 0, 3/4) x, 1/8, z | (8) d(0, 1/4, 3/4) 3/8, y, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2 1/4, 1/4, z | (3) 2(0, 1/2, 0) 1/4, y, 0 | (4) 2(1/2, 0, 0) x, 1/4, 0 |
(5) -1 3/8, 3/8, 1/8 | (6) d(3/4, 3/4, 0) x, y, 1/8 | (7) d(3/4, 0, 1/4) x, 3/8, z | (8) d(0, 3/4, 1/4) 3/8, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); t(1/2, 0, 1/2); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (0, 1/2, 1/2)+ (1/2, 0, 1/2)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -x, y, -z | (4) x, -y, -z | (5) -x + 1/4, -y + 1/4, -z + 1/4 | (6) x + 1/4, y + 1/4, -z + 1/4 | (7) x + 1/4, -y + 1/4, z + 1/4 | (8) -x + 1/4, y + 1/4, z + 1/4 |
| hkl : h + k = 2n and h + l, k + l = 2n 0kl : k + l = 4n and k, l = 2n h0l : h + l = 4n and h, l = 2n hk0 : h + k = 4n and h, k = 2n h00 : h = 4n 0k0 : k = 4n 00l : l = 4n
|
| | Special: as above, plus
|
| 0, 0, z | 0, 0, -z | 1/4, 1/4, -z + 1/4 | 1/4, 1/4, z + 1/4 |
| hkl : h = 2n + 1 or h + k + l = 4n |
| 0, y, 0 | 0, -y, 0 | 1/4, -y + 1/4, 1/4 | 1/4, y + 1/4, 1/4 |
|
| x, 0, 0 | -x, 0, 0 | -x + 1/4, 1/4, 1/4 | x + 1/4, 1/4, 1/4 |
|
| 5/8, 5/8, 5/8 | 3/8, 3/8, 5/8 | 3/8, 5/8, 3/8 | 5/8, 3/8, 3/8 |
| hkl : h = 2n + 1 or h, k, l = 4n + 2 or h, k, l = 4n |
| 1/8, 1/8, 1/8 | 7/8, 7/8, 1/8 | 7/8, 1/8, 7/8 | 1/8, 7/8, 7/8 |
|
| | hkl : h = 2n + 1 or h + k + l = 4n |
| |
Symmetry of special projections
Along [001] c2mm a' = 1/2a b' = 1/2b Origin at 0, 0, z | Along [100] c2mm a' = 1/2b b' = 1/2c Origin at x, 0, 0 | Along [010] c2mm a' = 1/2c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] Fdd2 (43) | (1; 2; 7; 8)+ |
| | [2] Fd2d (Fdd2, 43) | (1; 3; 6; 8)+ |
| | [2] F2dd (Fdd2, 43) | (1; 4; 6; 7)+ |
| | [2] F222 (22) | (1; 2; 3; 4)+ |
| | [2] F112/d (C2/c, 15) | (1; 2; 5; 6)+ |
| | [2] F12/d1 (C2/c, 15) | (1; 3; 5; 7)+ |
| | [2] F2/d11 (C2/c, 15) | (1; 4; 5; 8)+ |
Maximal isomorphic subgroups of lowest index
IIc | [3] Fddd (a' = 3a or b' = 3b or c' = 3c) (70) |
Minimal non-isomorphic supergroups
I | [2] I41/amd (141); [2] I41/acd (142); [3] Fd-3 (203) |
II | [2] Pnnn (a' = 1/2a, b' = 1/2b, c' = 1/2c) (48) |
Origin at -1 at d d d, at 1/8, 1/8, 1/8 from 2 2 2
Asymmetric unit | 0 ≤ x ≤ 1/8; -1/8 ≤ y ≤ 1/8; 0 ≤ z ≤ 1 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 3/8, 3/8, z | (3) 2 3/8, y, 3/8 | (4) 2 x, 3/8, 3/8 |
(5) -1 0, 0, 0 | (6) d(1/4, 1/4, 0) x, y, 0 | (7) d(1/4, 0, 1/4) x, 0, z | (8) d(0, 1/4, 1/4) 0, y, z |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) 2(0, 0, 1/2) 3/8, 1/8, z | (3) 2(0, 1/2, 0) 3/8, y, 1/8 | (4) 2 x, 1/8, 1/8 |
(5) -1 0, 1/4, 1/4 | (6) d(1/4, 3/4, 0) x, y, 1/4 | (7) d(1/4, 0, 3/4) x, 1/4, z | (8) d(0, 3/4, 3/4) 0, y, z |
For (1/2, 0, 1/2)+ set
(1) t(1/2, 0, 1/2) | (2) 2(0, 0, 1/2) 1/8, 3/8, z | (3) 2 1/8, y, 1/8 | (4) 2(1/2, 0, 0) x, 3/8, 1/8 |
(5) -1 1/4, 0, 1/4 | (6) d(3/4, 1/4, 0) x, y, 1/4 | (7) d(3/4, 0, 3/4) x, 0, z | (8) d(0, 1/4, 3/4) 1/4, y, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2 1/8, 1/8, z | (3) 2(0, 1/2, 0) 1/8, y, 3/8 | (4) 2(1/2, 0, 0) x, 1/8, 3/8 |
(5) -1 1/4, 1/4, 0 | (6) d(3/4, 3/4, 0) x, y, 0 | (7) d(3/4, 0, 1/4) x, 1/4, z | (8) d(0, 3/4, 1/4) 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); t(1/2, 0, 1/2); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (0, 1/2, 1/2)+ (1/2, 0, 1/2)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x + 3/4, -y + 3/4, z | (3) -x + 3/4, y, -z + 3/4 | (4) x, -y + 3/4, -z + 3/4 | (5) -x, -y, -z | (6) x + 1/4, y + 1/4, -z | (7) x + 1/4, -y, z + 1/4 | (8) -x, y + 1/4, z + 1/4 |
| hkl : h + k, h + l, k + l = 2n 0kl : k + l = 4n, k, l = 2n h0l : h + l = 4n, h, l = 2n hk0 : h + k = 4n, h, k = 2n h00 : h = 4n 0k0 : k = 4n 00l : l = 4n
|
| | Special: as above, plus
|
| 1/8, 1/8, z | 5/8, 1/8, -z + 3/4 | 7/8, 7/8, -z | 3/8, 7/8, z + 1/4 |
| hkl : h = 2n + 1 or h + k + l = 4n |
| 1/8, y, 1/8 | 5/8, -y + 3/4, 1/8 | 7/8, -y, 7/8 | 3/8, y + 1/4, 7/8 |
|
| x, 1/8, 1/8 | -x + 3/4, 5/8, 1/8 | -x, 7/8, 7/8 | x + 1/4, 3/8, 7/8 |
|
| 1/2, 1/2, 1/2 | 1/4, 1/4, 1/2 | 1/4, 1/2, 1/4 | 1/2, 1/4, 1/4 |
| hkl : h = 2n + 1 or h, k, l = 4n + 2 or h, k, l = 4n |
| 0, 0, 0 | 3/4, 3/4, 0 | 3/4, 0, 3/4 | 0, 3/4, 3/4 |
|
| 1/8, 1/8, 5/8 | 7/8, 7/8, 3/8 |
| hkl : h = 2n + 1 or h + k + l = 4n |
| 1/8, 1/8, 1/8 | 7/8, 7/8, 7/8 |
|
Symmetry of special projections
Along [001] c2mm a' = 1/2a b' = 1/2b Origin at 1/8, 1/8, z | Along [100] c2mm a' = 1/2b b' = 1/2c Origin at x, 1/8, 1/8 | Along [010] c2mm a' = 1/2c b' = 1/2a Origin at 1/8, y, 1/8 |
Maximal non-isomorphic subgroups
I | | [2] Fdd2 (43) | (1; 2; 7; 8)+ |
| | [2] Fd2d (Fdd2, 43) | (1; 3; 6; 8)+ |
| | [2] F2dd (Fdd2, 43) | (1; 4; 6; 7)+ |
| | [2] F222 (22) | (1; 2; 3; 4)+ |
| | [2] F112/d (C2/c, 15) | (1; 2; 5; 6)+ |
| | [2] F12/d1 (C2/c, 15) | (1; 3; 5; 7)+ |
| | [2] F2/d11 (C2/c, 15) | (1; 4; 5; 8)+ |
Maximal isomorphic subgroups of lowest index
IIc | [3] Fddd (a' = 3a or b' = 3b or c' = 3c) (70) |
Minimal non-isomorphic supergroups
I | [2] I41/amd (141); [2] I41/acd (142); [3] Fd-3 (203) |
II | [2] Pnnn (a' = 1/2a, b' = 1/2b, c' = 1/2c) (48) |