Origin on 3
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1; z ≤ min(x, y) | |||||
Vertices |
|
Symmetry operations
(1) 1 | (2) 3+ x, x, x | (3) 3- x, x, x |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | ||||||
General: | ||||||||
|
| no conditions |
Special: as above, plus | ||||||
|
| no extra conditions |
Symmetry of special projections
Along [111] p3 a' = 1/3(2a - b - c) b' = 1/3(-a + 2b - c) Origin at x, x, x | Along [1-10] p1 a' = 1/2(a + b - 2c) b' = c Origin at x, -x, 0 | Along [2-1-1] p1 a' = 1/2(b - c) b' = 1/3(a + b + c) Origin at 2x, -x, -x |
Maximal non-isomorphic subgroups
I | [3] R1 (P1, 1) | 1 |
IIa | none |
IIb | [3] P32 (a' = a - b, b' = b - c, c' = a + b + c) (145); [3] P31 (a' = a - b, b' = b - c, c' = a + b + c) (144); [3] P3 (a' = a - b, b' = b - c, c' = a + b + c) (143) |
Maximal isomorphic subgroups of lowest index
IIc | [2] R3 (a' = b + c, b' = a + c, c' = a + b) (146); [4] R3 (a' = -a + b + c, b' = a - b + c, c' = a + b - c) (146) |
Minimal non-isomorphic supergroups
I | [2] R-3 (148); [2] R32 (155); [2] R3m (160); [2] R3c (161); [4] P23 (195); [4] F23 (196); [4] I23 (197); [4] P213 (198); [4] I213 (199) |
II | [3] P3 (a' = 1/3(2a - b - c), b' = 1/3(-a + 2b - c), c' = 1/3(a + b + c)) (143) |