Origin on 3 m 1
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1; x ≤ 2y; y ≤ min(1 - x, 2x) |
Vertices | 0, 0, 0 | 2/3, 1/3, 0 | 1/3, 2/3, 0 | 0, 0, 1 | 2/3, 1/3, 1 | 1/3, 2/3, 1 |
|
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) m x, -x, z | (5) m x, 2x, z | (6) m 2x, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -y, -x, z | (5) -x + y, y, z | (6) x, x - y, z |
| no conditions |
| | Special: as above, plus
|
| x, -x, z | x, 2x, z | (-2x), -x, z |
| no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p3m1 a' = a b' = b Origin at 0, 0, z | Along [100] p1 a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p1m1 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P311 (P3, 143) | 1; 2; 3 |
| | [3] P1m1 (Cm, 8) | 1; 4 | | [3] P1m1 (Cm, 8) | 1; 5 | | [3] P1m1 (Cm, 8) | 1; 6 |
|
IIb | [2] P3c1 (c' = 2c) (158); [3] H3m1 (a' = 3a, b' = 3b) (P31m, 157) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P3m1 (c' = 2c) (156); [4] P3m1 (a' = 2a, b' = 2b) (156) |
Minimal non-isomorphic supergroups
I | [2] P-3m1 (164); [2] P6mm (183); [2] P63mc (186); [2] P-6m2 (187) |
II | [3] H3m1 (P31m, 157); [3] R3m (obverse) (160); [3] R3m (reverse) (160) |