Origin on 3 1 c
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/2; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) | ||||||||||
Vertices |
|
Symmetry operations
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) c x, x, z | (5) c x, 0, z | (6) c 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||
General: | |||||||||||
|
| hh(-2h)l : l = 2n 000l : l = 2n |
Special: as above, plus | |||||||
|
| hkil : l = 2n or h - k = 3n + 1 or h - k = 3n + 2 | |||||
|
| hkil : l = 2n |
Symmetry of special projections
Along [001] p31m a' = a b' = b Origin at 0, 0, z | Along [100] p1g1 a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p1 a' = 1/2b b' = 1/2c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | [2] P311 (P3, 143) | 1; 2; 3 | |||||||||||
|
IIa | none |
IIb | [3] H31c (a' = 3a, b' = 3b) (P3c1, 158); [3] R3c (a' = a - b, b' = a + 2b, c' = 3c) (161); [3] R3c (a' = 2a + b, b' = -a + b, c' = 3c) (161) |
Maximal isomorphic subgroups of lowest index
IIc | [3] P31c (c' = 3c) (159); [4] P31c (a' = 2a, b' = 2b) (159) |
Minimal non-isomorphic supergroups
I | [2] P-31c (163); [2] P6cc (184); [2] P63mc (186); [2] P-62c (190) |
II | [3] H31c (P3c1, 158); [2] P31m (c' = 1/2c) (157) |