Origin on 3 m
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/3; x ≤ 2y; y ≤ min(1 - x, 2x) | ||||||
Vertices |
|
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) m x, -x, z | (5) m x, 2x, z | (6) m 2x, x, z |
For (2/3, 1/3, 1/3)+ set
(1) t(2/3, 1/3, 1/3) | (2) 3+(0, 0, 1/3) 1/3, 1/3, z | (3) 3-(0, 0, 1/3) 1/3, 0, z |
(4) g(1/6, -1/6, 1/3) x + 1/2, -x, z | (5) g(1/6, 1/3, 1/3) x + 1/4, 2x, z | (6) g(2/3, 1/3, 1/3) 2x, x, z |
For (1/3, 2/3, 2/3)+ set
(1) t(1/3, 2/3, 2/3) | (2) 3+(0, 0, 2/3) 0, 1/3, z | (3) 3-(0, 0, 2/3) 1/3, 1/3, z |
(4) g(-1/6, 1/6, 2/3) x + 1/2, -x, z | (5) g(1/3, 2/3, 2/3) x, 2x, z | (6) g(1/3, 1/6, 2/3) 2x - 1/2, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(2/3, 1/3, 1/3); (2); (4)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||
(0, 0, 0)+ (2/3, 1/3, 1/3)+ (1/3, 2/3, 2/3)+ | General: | ||||||||||
|
| hkil : -h + k + l = 3n hki0 : -h + k = 3n hh(-2h)l : l = 3n h-h0l : h + l = 3n 000l : l = 3n h-h00 : h = 3n |
Special: as above, plus | ||||||||
|
| no extra conditions | ||||||
|
| no extra conditions |
Symmetry of special projections
Along [001] p31m a' = 1/3(2a + b) b' = 1/3(-a + b) Origin at 0, 0, z | Along [100] p1 a' = 1/2(a + 2b) b' = 1/3(-a - 2b + c) Origin at x, 0, 0 | Along [210] p1m1 a' = 1/2b b' = 1/3c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | [2] R31 (R3, 146) | (1; 2; 3)+ | |||||||||||
|
IIa | [3] P3m1 (156) | 1; 2; 3; 4; 5; 6 |
IIb | [2] R3c (a' = -a, b' = -b, c' = 2c) (161) |
Maximal isomorphic subgroups of lowest index
IIc | [2] R3m (a' = -a, b' = -b, c' = 2c) (160); [4] R3m (a' = -2a, b' = -2b) (160) |
Minimal non-isomorphic supergroups
I | [2] R-3m (166); [4] P-43m (215); [4] F-43m (216); [4] I-43m (217) |
II | [3] P31m (a' = 1/3(2a + b), b' = 1/3(-a + b), c' = 1/3c) (157) |