Origin on 3 c
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/6; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) | ||||||||||
Vertices |
|
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) c x, -x, z | (5) c x, 2x, z | (6) c 2x, x, z |
For (2/3, 1/3, 1/3)+ set
(1) t(2/3, 1/3, 1/3) | (2) 3+(0, 0, 1/3) 1/3, 1/3, z | (3) 3-(0, 0, 1/3) 1/3, 0, z |
(4) g(1/6, -1/6, 5/6) x + 1/2, -x, z | (5) g(1/6, 1/3, 5/6) x + 1/4, 2x, z | (6) g(2/3, 1/3, 5/6) 2x, x, z |
For (1/3, 2/3, 2/3)+ set
(1) t(1/3, 2/3, 2/3) | (2) 3+(0, 0, 2/3) 0, 1/3, z | (3) 3-(0, 0, 2/3) 1/3, 1/3, z |
(4) g(-1/6, 1/6, 1/6) x + 1/2, -x, z | (5) g(1/3, 2/3, 1/6) x, 2x, z | (6) g(1/3, 1/6, 1/6) 2x - 1/2, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(2/3, 1/3, 1/3); (2); (4)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||
(0, 0, 0)+ (2/3, 1/3, 1/3)+ (1/3, 2/3, 2/3)+ | General: | ||||||||||
|
| hkil : -h + k + l = 3n hki0 : -h + k = 3n hh(-2h)l : l = 3n h-h0l : h + l = 3n, l = 2n 000l : l = 6n h-h00 : h = 3n |
Special: as above, plus | |||||||
|
| hkil : l = 2n |
Symmetry of special projections
Along [001] p31m a' = 1/3(2a + b) b' = 1/3(-a + b) Origin at 0, 0, z | Along [100] p1 a' = 1/6(2a + 4b + c) b' = 1/6(-a - 2b + c) Origin at x, 0, 0 | Along [210] p1g1 a' = 1/2b b' = 1/3c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | [2] R31 (R3, 146) | (1; 2; 3)+ | |||||||||||
|
IIa | [3] P3c1 (158) | 1; 2; 3; 4; 5; 6 |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [4] R3c (a' = -2a, b' = -2b) (161); [5] R3c (a' = -a, b' = -b, c' = 5c) (161) |
Minimal non-isomorphic supergroups
I | [2] R-3c (167); [4] P-43n (218); [4] F-43c (219); [4] I-43d (220) |
II | [2] R3m (a' = -a, b' = -b, c' = 1/2c) (160); [3] P31c (a' = 1/3(2a + b), b' = 1/3(-a + b), c' = 1/3c) (159) |