R3c C3v6 3m Trigonal info
No. 161 R3c Patterson symmetry R-3m
RHOMBOHEDRAL AXES

symmetry group diagram

Origin on 3 c

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1; yx; zy
Vertices
0, 0, 0  1, 0, 0  1, 1, 0  1, 1, 1  

Symmetry operations

(1)  1   (2)  3+   xxx(3)  3-   xxx
(4)  n(1/21/21/2)   xyx(5)  n(1/21/21/2)   xxz(6)  n(1/21/21/2)   xyy

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
6 b 1
(1) xyz(2) zxy(3) yzx
(4) z + 1/2y + 1/2x + 1/2(5) y + 1/2x + 1/2z + 1/2(6) x + 1/2z + 1/2y + 1/2
hhl : l = 2n
hhh : h = 2n
    Special: as above, plus
2 a  3 . 
xxxx + 1/2x + 1/2x + 1/2
hkl : h + k + l = 2n

Symmetry of special projections

Along [111]   p31m
a' = 1/3(2a - b - c)   b' = 1/3(-a + 2b - c)   
Origin at xxx
Along [1-10]   p1
a' = 1/2(a + b - 2c)   b' = 1/2c   
Origin at x-x, 0
Along [2-1-1]   p1g1
a' = 1/2(b - c)   b' = 1/3(a + b + c)   
Origin at 2x-x-x

Maximal non-isomorphic subgroups

I [2] R31 (R3, 146)1; 2; 3
 [brace][3] R1c (Cc, 9)1; 4
 [3] R1c (Cc, 9)1; 5
 [3] R1c (Cc, 9)1; 6
IIa none
IIb[3] P3c1 (a' = a - bb' = b - cc' = a + b + c) (158)

Maximal isomorphic subgroups of lowest index

IIc[4] R3c (a' = -a + b + cb' = a - b + cc' = a + b - c) (161); [5] R3c (a' = a + 2b + 2cb' = 2a + b + 2cc' = 2a + 2b + c) (161)

Minimal non-isomorphic supergroups

I[2] R-3c (167); [4] P-43n (218); [4] F-43c (219); [4] I-43d (220)
II[2] R3m (a' = 1/2(-a + b + c), b' = 1/2(a - b + c), c' = 1/2(a + b - c)) (160); [3] P31c (a' = 1/3(2a - b - c), b' = 1/3(-a + 2b - c), c' = 1/3(a + b + c)) (159)








































to end of page
to top of page