Origin at centre (-3) on 63
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/4; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) |
Vertices | 0, 0, 0 | 1/2, 0, 0 | 2/3, 1/3, 0 | 1/3, 2/3, 0 | 0, 1/2, 0 | 0, 0, 1/4 | 1/2, 0, 1/4 | 2/3, 1/3, 1/4 | 1/3, 2/3, 1/4 | 0, 1/2, 1/4 |
|
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2(0, 0, 1/2) 0, 0, z | (5) 6-(0, 0, 1/2) 0, 0, z | (6) 6+(0, 0, 1/2) 0, 0, z |
(7) -1 0, 0, 0 | (8) -3+ 0, 0, z; 0, 0, 0 | (9) -3- 0, 0, z; 0, 0, 0 |
(10) m x, y, 1/4 | (11) -6- 0, 0, z; 0, 0, 1/4 | (12) -6+ 0, 0, z; 0, 0, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -x, -y, z + 1/2 | (5) y, -x + y, z + 1/2 | (6) x - y, x, z + 1/2 | (7) -x, -y, -z | (8) y, -x + y, -z | (9) x - y, x, -z | (10) x, y, -z + 1/2 | (11) -y, x - y, -z + 1/2 | (12) -x + y, -x, -z + 1/2 |
| 000l : l = 2n
|
| | Special: as above, plus
|
| x, y, 1/4 | -y, x - y, 1/4 | -x + y, -x, 1/4 | -x, -y, 3/4 | y, -x + y, 3/4 | x - y, x, 3/4 |
| no extra conditions |
| 1/2, 0, 0 | 0, 1/2, 0 | 1/2, 1/2, 0 | 1/2, 0, 1/2 | 0, 1/2, 1/2 | 1/2, 1/2, 1/2 |
| hkil : l = 2n
|
| 1/3, 2/3, z | 2/3, 1/3, z + 1/2 | 2/3, 1/3, -z | 1/3, 2/3, -z + 1/2 |
| hkil : l = 2n or h - k = 3n + 1 or h - k = 3n + 2
|
| 0, 0, z | 0, 0, z + 1/2 | 0, 0, -z | 0, 0, -z + 1/2 |
| hkil : l = 2n
|
| 2/3, 1/3, 1/4 | 1/3, 2/3, 3/4 |
| hkil : l = 2n or h - k = 3n + 1 or h - k = 3n + 2
|
| 1/3, 2/3, 1/4 | 2/3, 1/3, 3/4 |
| hkil : l = 2n or h - k = 3n + 1 or h - k = 3n + 2
|
| | hkil : l = 2n
|
| | hkil : l = 2n
|
Symmetry of special projections
Along [001] p6 a' = a b' = b Origin at 0, 0, z | Along [100] p2gm a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p2gm a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P-6 (174) | 1; 2; 3; 10; 11; 12 |
| | [2] P63 (173) | 1; 2; 3; 4; 5; 6 |
| | [2] P-3 (147) | 1; 2; 3; 7; 8; 9 |
| | [3] P21/m (11) | 1; 4; 7; 10 |
Maximal isomorphic subgroups of lowest index
IIc | [3] P63/m (c' = 3c) (176); [3] H63/m (a' = 3a, b' = 3b) (P63/m, 176) |
Minimal non-isomorphic supergroups
I | [2] P63/mcm (193); [2] P63/mmc (194) |
II | [2] P6/m (c' = 1/2c) (175) |