Origin at centre (-3)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; z ≤ min(x, y) | |||||
Vertices |
|
Symmetry operations
(1) 1 | (2) 2(0, 0, 1/2) 1/4, 0, z | (3) 2(0, 1/2, 0) 0, y, 1/4 | (4) 2(1/2, 0, 0) x, 1/4, 0 |
(5) 3+ x, x, x | (6) 3+ -x + 1/2, x, -x | (7) 3+ x + 1/2, -x - 1/2, -x | (8) 3+ -x, -x + 1/2, x |
(9) 3- x, x, x | (10) 3-(-1/3, 1/3, 1/3) x + 1/6, -x + 1/6, -x | (11) 3-(1/3, 1/3, -1/3) -x + 1/3, -x + 1/6, x | (12) 3-(1/3, -1/3, 1/3) -x - 1/6, x + 1/3, -x |
(13) -1 0, 0, 0 | (14) a x, y, 1/4 | (15) c x, 1/4, z | (16) b 1/4, y, z |
(17) -3+ x, x, x; 0, 0, 0 | (18) -3+ -x - 1/2, x + 1, -x; 0, 1/2, 1/2 | (19) -3+ x + 1/2, -x + 1/2, -x; 1/2, 1/2, 0 | (20) -3+ -x + 1, -x + 1/2, x; 1/2, 0, 1/2 |
(21) -3- x, x, x; 0, 0, 0 | (22) -3- x + 1/2, -x - 1/2, -x; 0, 0, 1/2 | (23) -3- -x, -x + 1/2, x; 0, 1/2, 0 | (24) -3- -x + 1/2, x, -x; 1/2, 0, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (13)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||||||||||||||||||||
h, k, l cyclically permutable General: | |||||||||||||||||||||||||||||
|
| 0kl : k = 2n h00 : h = 2n |
Special: as above, plus | |||||||||||||
|
| no extra conditions | |||||||||||
|
| hkl : h + k, h + l, k + l = 2n | |||||||||||
|
| hkl : h + k, h + l, k + l = 2n |
Symmetry of special projections
Along [001] p2gm a' = 1/2a b' = b Origin at 0, 0, z | Along [111] p6 a' = 1/3(2a - b - c) b' = 1/3(-a + 2b - c) Origin at x, x, x | Along [110] p2gg a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | [2] P213 (198) | 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 | ||||||||||||||
[3] Pa1 (Pbca, 61) | 1; 2; 3; 4; 13; 14; 15; 16 | |||||||||||||||
|
IIa | none |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [27] Pa-3 (a' = 3a, b' = 3b, c' = 3c) (205) |
Minimal non-isomorphic supergroups
I | none |
II | [2] Ia-3 (206); [4] Fm-3 (202) |