International Tables for Crystallography (2006). Vol. C. ch. 2.5, pp. 84-88
https://doi.org/10.1107/97809553602060000580 |
Chapter 2.5. Energy-dispersive techniques
Contents
- 2.5. Energy-dispersive techniques (pp. 84-88) | html | pdf | chapter contents |
- 2.5.1. Techniques for X-rays (pp. 84-87) | html | pdf |
- 2.5.1.1. Recording of powder diffraction spectra (p. 84) | html | pdf |
- 2.5.1.2. Incident X-ray beam (p. 84) | html | pdf |
- 2.5.1.3. Resolution (p. 85) | html | pdf |
- 2.5.1.4. Integrated intensity for powder sample (pp. 85-86) | html | pdf |
- 2.5.1.5. Corrections (p. 86) | html | pdf |
- 2.5.1.6. The Rietveld method (p. 86) | html | pdf |
- 2.5.1.7. Single-crystal diffraction (p. 86) | html | pdf |
- 2.5.1.8. Applications (pp. 86-87) | html | pdf |
- 2.5.2. White-beam and time-of-flight neutron diffraction (pp. 87-88) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 2.5.1.1. Standard and conical diffraction geometries: 2θ0 = fixed scattering angle (p. 84) | html | pdf |
- Fig. 2.5.1.2. XED powder spectrum of BaTiO3 recorded with synchrotron radiation from the electron storage ring DORIS at DESY-HASYLAB in Hamburg, Germany (p. 84) | html | pdf |
- Fig. 2.5.1.3. Relative resolution, , as function of Bragg angle, , for two values of the lattice plane spacing: (a) 1 Å and (b) 0.5 Å (p. 85) | html | pdf |
- Fig. 2.5.2.1. Construction in reciprocal space to illustrate the use of multi-wavelength radiation in single-crystal diffraction (p. 87) | html | pdf |
- 2.5.1. Techniques for X-rays (pp. 84-87) | html | pdf |