International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.1, pp. 189-190

Section 4.1.5.3. Infrared, visible, and ultraviolet light

V. Valvodaa

a Department of Physics of Semiconductors, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic

4.1.5.3. Infrared, visible, and ultraviolet light

| top | pdf |

Visible light is one of the oldest tools used by crystallographers for macroscopic symmetry determination, for orientation of crystals, and in metallographic microscopes for phase analysis. Infrared and Raman spectroscopy are highly complementary methods in the infrared and visible range of wavelengths, respectively. The information content available with the two techniques is determined by molecular symmetry and polarity. This information is utilized for the identification of molecules or structural groups [symmetric vibrations and nonpolar groups are most easily studied by Raman scattering, antisymmetric vibrations and polar groups by infrared scattering (Grasselli, Snavely & Bulkin, 1980[link])]. The valence states or the bonds of surface atoms and the local structure in the immediate neighbourhood of the chosen atoms can be studied by ultraviolet radiation in the energy range 10–50 eV by means of angle-resolved photoelectron emission (Plummer & Eberhardt, 1982[link]).

References

First citation Grasselli, J. G., Snavely, M. K. & Bulkin, B. J. (1980). Applications of Raman spectroscopy. Physics reports 65, No. 4, pp. 231–344. Amsterdam: North-Holland.Google Scholar
First citation Plummer, E. W. & Eberhardt, W. (1982). Advances in chemical physics, Vol. XLIX. Angle-resolved photoemission as a tool for the study of surfaces, edited by I. Prigogine & S. I. Rice. New York: John Wiley.Google Scholar








































to end of page
to top of page