International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 5.3, pp. 505-536
https://doi.org/10.1107/97809553602060000597

Chapter 5.3. X-ray diffraction methods: single crystal

E. Gałdeckaa

a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 937, 50-950 Wrocław 2, Poland

References

First citation Abrahams, S. C., Liminga, R., Marsh, P., Schrey, F., Albertsson, J., Svensson, C. & Kvick, Å. (1983). Thermal expansivity of α-LiIO3 between 20 and 520 K. J. Appl. Cryst. 16, 453–457.Google Scholar
First citation Alcock, N. W. & Sheldrick, G. M. (1967). The determination of accurate unit-cell dimensions from inclined Weissenberg photographs. Acta Cryst. 23, 35–38.Google Scholar
First citation Alexander, L. (1948). Geometrical factors affecting the contours of X-ray spectrometer maxima. I. Factors causing asymmetry. J. Appl. Phys. 19, 1068–1071.Google Scholar
First citation Alexander, L. (1950). Geometrical factors affecting the contours of X-ray spectrometer maxima. II. Factors causing broadening. J. Appl. Phys. 21, 126–136.Google Scholar
First citation Alexander, L. (1954). The synthesis of X-ray spectrometer line profiles with application to crystallite size measurements. J. Appl. Phys. 25, 155–161.Google Scholar
First citation Alexander, L. E. & Smith, G. (1962). Single-crystal intensity measurements with the three-circle counter diffractometer. Acta Cryst. 15, 983–1004.Google Scholar
First citation Amorós, J. L., Buerger, M. J. & Amorós, M. C. (1975). The Laue method. New York: Academic Press.Google Scholar
First citation d'Amour, H., Denner, W., Schulz, H. & Cardona, M. (1982). A uniaxial stress apparatus for single-crystal X-ray diffraction on a four-circle diffractometer: Application to silicon and diamond. J. Appl. Cryst. 15, 148–153.Google Scholar
First citation Ando, M., Bailey, D. & Hart, M. (1978). A simple Bragg-spacing comparator. Acta Cryst. A34, 484–489.Google Scholar
First citation Ando, M., Hagashi, Y., Usuda, K., Yasuami, S. & Kawata, H. (1989). A precision Bond method with SR. Rev. Sci. Instrum. 60, 2410–2413.Google Scholar
First citation Aristov, V. V., Shekhtman, V. Sh. & Shmytko, I. M. (1973). Precision measurement of crystallographic parameters by the X-ray divergent-beam technique. (In Russian.) Kristallografiya, 18, 706–709. (English transl: Sov. Phys. Crystallogr. 18, 445–446.)Google Scholar
First citation Aristov, V. V. & Shmytko, I. M. (1978). Precision lattice parameter measurement by the X-ray divergent-beam technique. J. Appl. Cryst. 11, 662–668.Google Scholar
First citation Aristov, V. V., Shmytko, I. M. & Shulakov, E. V. (1974a). Application of the X-ray divergent-beam technique for the determination of the angles between crystal blocks. I. Reflexion from the planes parallel to the crystal surface. J. Appl. Cryst. 7, 409–413.Google Scholar
First citation Aristov, V. V., Shmytko, I. M. & Shulakov, E. V. (1974b). Application of the X-ray divergent-beam technique for the determination of the angles between crystal blocks. II. Determination of the total misorientation angle between blocks. J. Appl. Cryst. 7, 413–416.Google Scholar
First citation Arndt, U. W. & Willis, B. T. M. (1966). Single crystal diffractometry. Cambridge University Press.Google Scholar
First citation Åsbrink, S., Wołcyrz, M. & Hong, S.-H. (1985a). X-ray Bond-type diffractometric investigations on V3O5 in the temperature interval 298 to 480 K including the phase transition temperature Tt = 428 K. Phys. Status Solidi A, 87, 135–140.Google Scholar
First citation Åsbrink, S., Wołcyrz, M. & Hong, S.-H. (1985b). X-ray Bond-type diffractometric investigations on V3O5 in the temperature interval 298 to 480 K including the phase transition temperature Tt = 428 K. Erratum. Phys. Status Solidi A, 89, 415.Google Scholar
First citation Azároff, L. V. (1974). X-ray spectroscopy, Chap. 2. New York: McGraw-Hill.Google Scholar
First citation Bačkovský, J. (1965). On the most accurate measurements of the wavelengths of X-ray spectral lines. Czech. J. Phys. B15, 752–759.Google Scholar
First citation Baker, J. A., Tucker, T. N., Moyer, N. E. & Buschert, R. C. (1968). Effects of carbon on the lattice parameter of silicon. J. Appl. Phys. 39, 4365–4368.Google Scholar
First citation Baker, J. F. C. & Hart, M. (1975). An absolute measurement of the lattice parameter of germanium using multiple-beam X-ray diffractometry. Acta Cryst. A31, 364–367.Google Scholar
First citation Baker, J. F. C., Hart, M., Halliwell, M. A. G. & Heckingbottom, R. (1976). Precise lattice parameter determination of dislocation-free gallium arsenide. I. X-ray measurements. Solid-State Electron. 19, 331–334.Google Scholar
First citation Baker, T. W., George, J. D., Bellamy, B. A. & Causer, R. (1966). Very high precision X-ray diffraction. Nature (London), 210, 720–721.Google Scholar
First citation Baker, T. W., George, J. D., Bellamy, B. A. & Causer, R. (1968). Fully automated high-precision X-ray diffraction. Adv. X-ray Anal. 11, 359–375.Google Scholar
First citation Barla, K., Herino, R., Bomchil, G. & Pfister, J. C. (1984). Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction. J. Cryst. Growth, 68, 727–732.Google Scholar
First citation Barns, R. L. (1972). A strategy for rapid and accurate (p.p.m.) measurement of lattice parameters of single crystals by Bond's method. Adv. X-ray Anal. 15, 330–338.Google Scholar
First citation Bartels, W. J. (1983). Characterization of thin layers on perfect crystals with a multipurpose high-resolution X-ray diffractometer. J. Vac. Sci. Technol. B1, 338–345.Google Scholar
First citation Batchelder, D. N. & Simmons, R. O. (1965). X-ray lattice constant of crystals by a rotating-camera method: Al, Ar, Au, CaF2, Cu, Ge, Ne, Si. J. Appl. Phys. 36, 2864–2868.Google Scholar
First citation Bearden, J. A. (1933). The wavelengths of the silver, molybdenum, copper, iron and chromium Kα1 lines. Phys. Rev. 43, 92–97.Google Scholar
First citation Bearden, J. A. (1965). Selection of W Kα1 as the X-ray wavelength standard. Phys. Rev. 137, BY55–BY61.Google Scholar
First citation Bearden, J. A. (1967). X-ray wavelengths. Rev. Mod. Phys. 39, 78–124.Google Scholar
First citation Bearden, J. A. & Henins, A. (1965). Precision measurement of lattice imperfections with a photographic two-crystal method. Rev. Sci. Instrum. 36, 334–338.Google Scholar
First citation Bearden, J. A., Marzolf, J. G. & Thomsen, J. S. (1968). Crystal diffraction profiles for monochromatic radiation. Acta Cryst. A24, 295–301.Google Scholar
First citation Bearden, J. A. & Thomsen, J. S. (1971). The double-crystal X-ray spectrometer: corrections, errors, and alignment procedure. J. Appl. Cryst. 4, 130–138.Google Scholar
First citation Becker, P., Dorenwendt, K., Ebeling, G., Lauer, R., Lucas, W., Probst, R., Rademacher, H.-J., Reim, G., Seyfried, P. & Siegert, H. (1981). Absolute measurement of the (220) lattice plane spacing in silicon crystal. Phys. Rev. Lett. 46, 1540–1543.Google Scholar
First citation Becker, P., Seyfried, P. & Siegert, H. (1982). The lattice parameter of highly pure silicon single crystals. Z. Phys. B, 48, 17–21.Google Scholar
First citation Berg, H. M. & Hall, E. L. (1975). The pseudo-Kossel technique in back reflection as a tool for measuring strains. Adv. X-ray Anal. 18, 454–465.Google Scholar
First citation Berger, H. (1984). A method for precision lattice-parameter measurement of single crystals. J. Appl. Cryst. 17, 451–455.Google Scholar
First citation Berger, H. (1986a). Systematic errors in precision lattice parameter determination of single crystals caused by asymmetric line profiles. J. Appl. Cryst. 19, 34–38.Google Scholar
First citation Berger, H. (1986b). Study of the Kα emission spectrum of copper. X-ray Spectrom. 15, 241–243.Google Scholar
First citation Berger, H. (1993). X-ray diffraction studies on point defects in II–VI compounds. Cryst. Res. Technol. 28, 795–801.Google Scholar
First citation Berger, H., Lehmann, A. & Schenk, M. (1985). Lattice parameter variations in PbTe single crystals. Cryst. Res. Technol. 20, 579–581.Google Scholar
First citation Berger, H., Rosner, B. & Schikora, D. (1989). Lattice parameter determination of superlattices. Cryst. Res. Technol. 24, 437–441.Google Scholar
First citation Beu, K. E. (1967). The precise and accurate determination of lattice parameters. Handbook of X-rays, edited by E. F. Kaelble, Chap. 10. New York: McGraw-Hill.Google Scholar
First citation Beu, K. E., Musil, F. J. & Whitney, D. R. (1962). Precise and accurate lattice parameters by film powder methods. I. The likelihood ratio method. Acta Cryst. 15, 1292–1301.Google Scholar
First citation Bevis, M., Fearon, E. O. & Rowlands, P. C. (1970). The accurate determination of lattice parameters and crystal orientations from Kossel patterns. Phys. Status Solidi A, 1, 653–659.Google Scholar
First citation Biggin, S. & Dingley, D. J. (1977). A general method for locating the X-ray source point in Kossel diffraction. J. Appl. Cryst. 10, 376–385.Google Scholar
First citation Bolotina, N. B. (1989). Refinement of unit-cell parameters and orientation of specimen in diffractometer, taking account of symmetry of single crystal. Kristallografiya, 34, 598–601. (English transl: Sov. Phys. Crystallogr. 34, 355–357.)Google Scholar
First citation Bond, W. L. (1960). Precision lattice constant determination. Acta Cryst. 13, 814–818.Google Scholar
First citation Bond, W. L. (1975). Precision lattice constant determination. Erratum. Acta Cryst. A31, 698.Google Scholar
First citation Bonse, U. & te Kaat, E. (1968). A two-crystal X-ray interferometer. Z. Phys. 214, 16–21.Google Scholar
First citation Bowen, D. K. & Tanner, B. K. (1995). A method for the accurate comparison of lattice parameters. J. Appl. Cryst. 28, 753–760.Google Scholar
First citation Bragg, W. H. & Bragg, W. L. (1915). X-rays and crystal structure, Chap. 2. London: G. Bell and Sons.Google Scholar
First citation Brown, B. R., Halliwell, M. A. G. & Isherwood, B. J. (1980). The characterization of distortions in heteroepitaxial structures by X-ray multiple diffraction. J. Microsc. 118, 375–381.Google Scholar
First citation Brühl, H.-G. (1978). Precision lattice parameter measurements of VPE-GaP-epitaxial layers by the `Umweganregung' method. Krist. Tech. 13, 1247–1251.Google Scholar
First citation Brühl, H.-G. & Rhan, H. (1985). On the extension of the theory of Umweganregung with respect to the use of divergent white X-ray radiation. Phys. Status Solidi A, 87, 121–126.Google Scholar
First citation Buerger, M. J. (1942). X-ray crystallography. London: John Wiley.Google Scholar
First citation Buras, B., Olsen, J. S., Gerward, L., Will, G. & Hinze, E. (1977). X-ray energy-dispersive diffractometry using synchrotron radiation. J. Appl. Cryst. 10, 431–438.Google Scholar
First citation Burke, J. & Tomkeieff, M. V. (1968). Specimen and beam tilt errors in Bond's method of lattice parameter determination. Acta Cryst. A24, 683–685.Google Scholar
First citation Burke, J. & Tomkeieff, M. V. (1969). Errors in the Bond method of lattice parameter determinations. Further considerations. J. Appl. Cryst. 2, 247–248.Google Scholar
First citation Buschert, R. C. (1965). X-ray lattice parameter and linewidth studies in silicon. Bull. Am. Phys. Soc. 10, 125.Google Scholar
First citation Buschert, R. C., Merlini, A. E., Pace, S., Rodriguez, S. & Grimsditch, M. H. (1988). Effect of isotope concentration on the lattice parameter of germanium perfect crystals. Phys. Rev. B, 38, 5219–5221.Google Scholar
First citation Buschert, R. C., Meyer, A. J., Stuckey Kauffman, D. & Gotwals, J. K. (1983). A double-source double-crystal X-ray spectrometer for high-sensitivity lattice-parameter difference measurements. J. Appl. Cryst. 16, 599–605.Google Scholar
First citation Buschert, R. C., Pace, S., Inzaghi, D. & Merlini, A. E. (1980). A high-sensitivity double-beam triple-crystal spectrometer for lattice parameter and topographic measurements. J. Appl. Cryst. 13, 207–210.Google Scholar
First citation Busing, W. R. & Levy, H. A. (1967). Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Cryst. 22, 457–464.Google Scholar
First citation Carr, P. D., Cruickshank, D. W. J. & Harding, M. M. (1992). The determination of unit-cell parameters from Laue diffraction patterns using their gnomonic projections. J. Appl. Cryst. 25, 294–308.Google Scholar
First citation Cembali, F., Fabri, R., Servidori, M., Zani, A., Basile, G., Cavagnero, G., Bergamin, A. & Zosi, G. (1992). Precise X-ray relative measurement of lattice parameters of silicon wafers by multiple-crystal Bragg-case diffractometry. Computer simulation of the experiment. J. Appl. Cryst. 25, 424–431.Google Scholar
First citation Černohorský, M. (1960). The ratio method for absolute measurements of lattice parameters with cylindrical cameras. Acta Cryst. 13, 823–826.Google Scholar
First citation Chang, S.-L. (1979). Direct observation of two-dimensional lattice mismatch parallel to the interfacial boundary between the LPE Ga0.65Al0.35As layer and the GaAs substrate. Appl. Phys. Lett. 34, 239–240.Google Scholar
First citation Chang, S.-L. (1984). Multiple diffraction of X-rays in crystals, Chap. 7.2 in particular. Berlin: Springer-Verlag.Google Scholar
First citation Chang, S.-L., Patel, N. B., Nannichi, Y. & de Prince, F. C. (1979). Determination of lattice mismatch in Ga1−xAlxAs LPE layer on GaAs substrate by using a divergent X-ray source. J. Appl. Phys. 50, 2975–2976.Google Scholar
First citation Clegg, W. (1981). Least-squares refinement of unit-cell parameters from precession photographs. Acta Cryst. A37, 437–438.Google Scholar
First citation Clegg, W. (1984). Orientation matrix refinement during four-circle diffractometer data collection. Acta Cryst. A40, 703–704.Google Scholar
First citation Clegg, W. & Sheldrick, G. M. (1984). The refinement of unit cell parameters from two-circle diffractometer measurements. Z. Kristallogr. 167, 23–27.Google Scholar
First citation Cole, H., Chambers, F. W. & Dunn, H. M. (1962). Simultaneous diffraction: indexing Umweganregung peaks in simple cases. Acta Cryst. 15, 138–144.Google Scholar
First citation Compton, A. H. & Allison, S. K. (1935). X-rays in theory and experiment. New York: Van Nostrand.Google Scholar
First citation Cooper, A. S. (1962). Precise lattice constants of germanium, aluminium, gallium arsenide, uranium, sulphur, quartz and sapphire. Acta Cryst. 15, 578–582.Google Scholar
First citation Cruickshank, D. W. J., Carr, P. D. & Harding, M. M. (1992). Estimation of dmin, λmin and λmax from the gnomonic projections of Laue patterns. J. Appl. Cryst. 25, 285–293.Google Scholar
First citation Davis, B. L. & Johnson, L. R. (1984). The true unit cell of ammonium hydrogen sulfate, (NH4)3H(SO4)2. J. Appl. Cryst. 17, 331–333.Google Scholar
First citation Deslattes, R. D. (1969). Optical and X-ray interferometry of a silicon lattice spacing. Appl. Phys. Lett. 15, 386–388.Google Scholar
First citation Deslattes, R. D. & Henins, A. (1973). X-ray to visible wavelength ratios. Phys. Rev. Lett. 31, 972–975.Google Scholar
First citation Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Caroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J. & Shields, W. R. (1974). Determination of the Avogadro constant. Phys. Rev. Lett. 33, 463–466.Google Scholar
First citation Deslattes, R. D., Henins, A., Schoonover, R. M., Caroll, C. L. & Bowman, H. A. (1976). Avogadro constant – correction to an earlier report. Phys. Rev. Lett. 36, 898–900.Google Scholar
First citation Dressler, L., Griebner, U. & Kittner, R. (1987). Precision measurement of lattice parameters in LiF monocrystals. Cryst. Res. Technol. 22, 1431–1435.Google Scholar
First citation Eastabrook, J. N. (1952). Effect of vertical divergence on the displacement and breadth of X-ray powder diffraction lines. Br. J. Appl. Phys. 3, 349–352.Google Scholar
First citation Ellis, T., Nanni, L. F., Shrier, A., Weissmann, S., Padawer, G. E. & Hosokawa, N. (1964). Strain and precision lattice parameter measurements by the X-ray divergent beam method. I. J. Appl. Phys. 35, 3364–3373.Google Scholar
First citation Evans, H. T. Jr & Lonsdale, K. (1959). Diffraction geometry. International tables for X-ray crystallography, Vol. II, Chap. 4. Birmingham: Kynoch Press.Google Scholar
First citation Farquhar, M. C. M. & Lipson, H. (1946). The accurate determination of cell dimensions from single-crystal X-ray photographs. Proc. Phys. Soc. London, 58, 200–206.Google Scholar
First citation Fewster, P. F. (1982). Absolute lattice-parameter measurements of epitaxial layers. J. Appl. Cryst. 15, 275–278.Google Scholar
First citation Fewster, P. F. (1989). A high-resolution multiple-crystal multiple-reflection diffractometer. J. Appl. Cryst. 22, 64–69.Google Scholar
First citation Fewster, P. F. (1993). Structural characterisation of materials by combining X-ray diffraction space mapping and topography. Philips J. Res. 47, 235–245.Google Scholar
First citation Fewster, P. F. & Andrew, N. L. (1995). Absolute lattice-parameter measurement. J. Appl. Cryst. 28, 451–458.Google Scholar
First citation Fewster, P. F. & Willoughby, A. F. W. (1980). The effect of silicon doping on the lattice parameter of gallium arsenide grown by liquid-phase epitaxy, vapour-phase epitaxy and gradient-freeze techniques. J. Cryst. Growth, 50, 648–653.Google Scholar
First citation Filscher, G. & Unangst, D. (1980). Bond-method for precision lattice constant determination. Dependence of lattice constant error on sample adjustment and collimator tilt. Krist. Tech. 15, 955–960.Google Scholar
First citation Fischer, D. G. & Harris, N. (1970). A computer program for the calculation of lattice spacings from Kossel diffraction patterns. J. Appl. Cryst. 3, 305–313.Google Scholar
First citation Fukahara, A. & Takano, Y. (1977). Determination of strain distributions from X-ray Bragg reflexion by silicon single crystals. Acta Cryst. A33, 137–142.Google Scholar
First citation Fukumori, T. & Futagami, K. (1988). Measurements of lattice parameters and half-widths of the rocking curve on GaAs crystal by the X-ray double-crystal method using a Cu Kα doublet. Jpn. J. Appl. Phys. 27, 442–443.Google Scholar
First citation Fukumori, T., Futagami, K. & Matsunaga, K. (1982). X-ray double-crystal method for crystal lattice parameter measurements using Cu Kα doublet. Jpn. J. Appl. Phys. 21, 1525.Google Scholar
First citation Fukumori, T., Imai, K., Hasegawa, T. & Akashi, Y. (1997). Precision lattice spacing measurement using X-ray Cu Kα doublet. J. Phys. Soc. Jpn, 66, 1976–1978.Google Scholar
First citation Gabe, E. J. (1980). Diffractometer control with minicomputers. Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 1.01–1.18. Bangalore: Indian Academy of Sciences.Google Scholar
First citation Gałdecka, E. (1985). The variances and covariances of measured intensities in precise lattice-constant determination by the Bond method. Structure & statistics in crystallography, edited by A. J. C. Wilson, pp. 137–149. New York: Adenine Press.Google Scholar
First citation Gałdecka, E. (1993a). Description and peak-position determination of a single X-ray diffraction profile for high-accuracy lattice-parameter measurements by the Bond method. I. An analysis of descriptions available. Acta Cryst. A49, 106–115.Google Scholar
First citation Gałdecka, E. (1993b). Description and peak-position determination of a single X-ray diffraction profile for high-accuracy lattice-parameter measurements by the Bond method. II. Testing and choice of description. Acta Cryst. A49, 116–126.Google Scholar
First citation Gałdecka, E. (1994). The extrapolated-peak method for the peak-position determination of an X-ray diffraction profile, and the accuracy of the Bragg-angle measurements. Sci. Bull. Tech. Univ. Łódź Branch Bielsko-Biała, 22(4), 1–24.Google Scholar
First citation Gamarnik, M. Ya. (1990). Size changes of lattice parameters in ultradisperse diamond and silicon. Phys. Status Solidi B, 161, 457–462.Google Scholar
First citation Geist, V. & Ascheron, C. (1984). The proton-induced Kossel effect and its application to crystallographic studies. Cryst. Res. Technol. 19, 1231–1244.Google Scholar
First citation Gielen, P., Yakowitz, H., Ganow, D. & Ogilvie, R. E. (1965). Evaluation of Kossel microdiffraction procedures: the cubic case. J. Appl. Phys. 36, 773–782.Google Scholar
First citation Glass, H. L. & Moudy, L. A. (1974). Measurement of the lattice parameter of gadolinium gallium garnet crystals by the X-ray divergent-beam anomalous-transmission method. J. Appl. Cryst. 7, 22–24.Google Scholar
First citation Glass, H. L. & Weissmann, S. (1969). Synergy of line profile analysis and selected area topography by the X-ray divergent beam method. J. Appl. Cryst. 2, 200–209.Google Scholar
First citation Glazer, A. M. (1972). A technique for the automatic recording of phase transitions in single crystals. J. Appl. Cryst. 5, 420–423.Google Scholar
First citation Glazer, A. M. & Megaw, H. D. (1973). Studies of the lattice parameters and domains in the phase transitions of NaNbO3. Acta Cryst. A29, 489–495.Google Scholar
First citation Godwod, K., Kowalczyk, R. & Szmid, Z. (1974). Application of a precise double X-ray spectrometer for accurate lattice parameter determination. Phys. Status Solidi A, 21, 227–234.Google Scholar
First citation Golovin, A. L., Imamov, R. M. & Kondrashkina, E. A. (1985). Absolute measurements of lattice spacings in surface layers of crystals. Phys. Status Solidi A, 89, K5–K7.Google Scholar
First citation Grosswig, S., Härtwig, J., Alter, U. & Christoph, A. (1983). Precision lattice parameter determination of coloured quartz monocrystals. Cryst. Res. Technol. 18, 501–511.Google Scholar
First citation Grosswig, S., Härtwig, J., Jäckel, K.-H., Kittner, R. & Melle, W. (1986). A novel arrangement for the absolute measurement of geometric lattice parameters of monocrystals with high precision. Nauch. Apparat. Sci. Instrum. 1, 29–44.Google Scholar
First citation Grosswig, S., Jäckel, K.-H. & Kittner, R. (1986). Peak position determination of X-ray diffraction profiles in precision lattice parameter measurements according to the Bond-method with help of the polynomial approximation. Cryst. Res. Technol. 21, 133–139.Google Scholar
First citation Grosswig, S., Jäckel, K.-H., Kittner, R., Dietrich, B. & Schellenberger, U. (1985). Determination of the coplanar geometric lattice parameters of monocrystals with high precision. Cryst. Res. Technol. 20, 1093–1100.Google Scholar
First citation Grosswig, S., Melle, W., Schellenberger, U. & Zahorowski, W. (1983). High precision lattice parameter determination of KDP with different crystal perfection. Cryst. Res. Technol. 18, K28–K30.Google Scholar
First citation Gruber, E. E. & Black, R. E. (1970). Analysis of the axial misalignment error in precision lattice parameter measurement by the Bond technique. J. Appl. Cryst. 3, 354–357.Google Scholar
First citation Halliwell, M. A. G. (1970). Measurement of specimen tilt and beam tilt in the Bond method. J. Appl. Cryst. 3, 418–419.Google Scholar
First citation Hamilton, W. C. (1974). Angle settings for four-circle diffractometers. International tables for X-ray crystallography, Vol. IV, pp. 274–284. Birmingham: Kynoch Press.Google Scholar
First citation Hanneman, R. E., Ogilvie, R. E. & Modrzejewski, A. (1962). Kossel line studies of irradiated nickel crystals. J. Appl. Phys. 33, 1429–1435.Google Scholar
First citation Harris, N. & Kirkham, A. J. (1971). A single-exposure method for the determination of lattice spacings and crystal orientation from Kossel diffraction patterns. J. Appl. Cryst. 4, 232–240.Google Scholar
First citation Hart, M. (1969). High precision lattice parameter measurements by multiple Bragg reflexion diffractometry. Proc. R. Soc. London Ser. A, 309, 281–296.Google Scholar
First citation Hart, M. (1981). Bragg angle measurement and mapping. J. Cryst. Growth, 55, 409–427.Google Scholar
First citation Hart, M. & Lloyd, K. H. (1975). Measurement of strain and lattice parameter in epitaxic layers. J. Appl. Cryst. 8, 42–44.Google Scholar
First citation Hart, M., Parrish, W., Bellotto, M. & Lim, G. S. (1988). The refractive-index correction in powder diffraction. Acta Cryst. A44, 193–197.Google Scholar
First citation Härtwig, J., Bąk-Misiuk, J., Berger, H., Brühl, H.-G., Okada, Y., Grosswig, S., Wokulska, K. & Wolf, J. (1994). Comparison of lattice parameters obtained from an internal monocrystal standard. Phys. Status Solidi A, 142, 19–26.Google Scholar
First citation Härtwig, J. & Grosswig, S. (1989). Measurement of X-ray diffraction angles of perfect monocrystals with high accuracy using a single crystal diffractometer. Phys. Status Solidi A, 115, 369–382.Google Scholar
First citation Härtwig, J., Grosswig, S., Becker, P. & Windisch, D. (1991). Remeasurement of the Cu Kα1 emission X-ray wavelength in the metrical system (present stage). Phys. Status Solidi A, 125, 79–89.Google Scholar
First citation Härtwig, J., Hölzer, G., Förster, E., Goetz, K., Wokulska, K. & Wolf, J. (1994). Remeasurement of characteristic X-ray emission lines and their application to line profile analysis and lattice parameter determination. Phys. Status Solidi A, 143, 23–34.Google Scholar
First citation Härtwig, J., Hölzer, G., Wolf, J. & Förster, E. (1993). Remeasurement of the profile of the characteristic Cu Kα emission line with high precision and accuracy. J. Appl. Cryst. 26, 539–548.Google Scholar
First citation Häusermann, D. & Hart, M. (1990). A fast high-accuracy lattice-parameter comparator. J. Appl. Cryst. 23, 63–69.Google Scholar
First citation Hebert, H. (1978). A simple method for obtaining triclinic cell parameters from Weissenberg photographs from one crystal setting. Acta Cryst. A34, 946–949.Google Scholar
First citation Heise, H. (1962). Precision determination of the lattice constant by the Kossel line technique. J. Appl. Phys. 33, 938–941.Google Scholar
First citation Henry, N. F. M., Lipson, H. & Wooster, W. A. (1960). The interpretation of X-ray diffraction photographs. London: Macmillan.Google Scholar
First citation Herbstein, F. H. (2000). How precise are measurements of unit-cell dimensions from single crystals? Acta Cryst. B56, 547–557.Google Scholar
First citation Holý, V. & Härtwig, J. (1988). The role of diffuse scattering on microdefects in the precise lattice parameter measurement. Phys. Status Solidi B, 145, 363–372.Google Scholar
First citation Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. (1997). 1,2 and Kβ1,3 X-ray emission lines of the 3d transition metals. Phys. Rev. A, 56, 4554–4568.Google Scholar
First citation Hom, T., Kiszenick, W. & Post, B. (1975). Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium, silicon and diamond. J. Appl. Cryst. 8, 457–458.Google Scholar
First citation Horváth, J. (1983). Lattice-parameter measurements of PbHPO4 single crystals by the ratio method. J. Appl. Cryst. 16, 623–628.Google Scholar
First citation Horváth, J. & Kucharczyk, D. (1981). Temperature dependence of lattice parameters of PbHPO4 and PbDPO4 single crystals. Phys. Status Solidi A, 63, 687–692.Google Scholar
First citation Hubbard, C. R. & Mauer, F. A. (1976). Precision and accuracy of the Bond method as applied to small spherical crystals. J. Appl. Cryst. 9, 1–8.Google Scholar
First citation Hubbard, C. R., Swanson, H. E. & Mauer, F. A. (1975). A silicon powder diffraction standard reference material. J. Appl. Cryst. 8, 45–48.Google Scholar
First citation Hulme, R. (1966). Triclinic cell parameters from one crystal setting. Acta Cryst. 21, 898–900.Google Scholar
First citation Imura, T. (1954). The study of deformation of single crystals by the divergent X-ray beams. Bull. Naniwa. Univ. Ser. A, 51.Google Scholar
First citation Imura, T., Weissmann, S. & Slade, J. J. Jr (1962). A study of age-hardening of Al–3.85%Cu by the divergent X-ray beam method. Acta Cryst. 15, 786–793.Google Scholar
First citation Irie, K., Koshiji, N. & Okazaki, A. (1989). High-angle double-crystal X-ray diffractometry (HADOX): combination with a sealed-tube X-ray source. Jpn. J. Appl. Phys. 28, 1504–1506.Google Scholar
First citation Isherwood, B. J. (1968). An X-ray multiple diffraction study of yttrium iron garnet crystals. J. Appl. Cryst. 1, 299–307.Google Scholar
First citation Isherwood, B. J., Brown, B. R. & Halliwell, M. A. G. (1981). X-ray multiple diffraction as a tool for studying heteroepitaxial layers. I. Coherent, on-axis layers. J. Cryst. Growth, 54, 449–460.Google Scholar
First citation Isherwood, B. J., Brown, B. R. & Halliwell, M. A. G. (1982). X-ray multiple diffraction as a tool for studying heteroepitaxial layers. II. Coherent, off-axis layers. J. Cryst. Growth, 60, 33–42.Google Scholar
First citation Isherwood, B. J. & Wallace, C. A. (1966). Measurement of the lattice parameter of silicon using a double-diffraction effect. Nature (London), 212, 173–175.Google Scholar
First citation Isherwood, B. J. & Wallace, C. A. (1970). An X-ray multiple diffraction study of crystals of arsenic-doped germanium. J. Appl. Cryst. 3, 66–71.Google Scholar
First citation Isherwood, B. J. & Wallace, C. A. (1971). The geometry of X-ray multiple diffraction in crystals. Acta Cryst. A27, 119–130.Google Scholar
First citation James, R. W. (1967). The optical principles of the diffraction of X-rays. London: Bell.Google Scholar
First citation Keller, H. L., Kucharczyk, D. & Küppers, H. (1982). The ferroelastic monoclinic low temperature modification of ammonium hydrogen oxalate hemihydrate. Z. Kristallogr. 158, 221–232.Google Scholar
First citation Kheiker, D. M. (1973). Rentgenowskaya diffraktometriya monokristallow, Chaps. 3, 4, 5. Leningrad: Mashinostroyenie.Google Scholar
First citation Kheiker, D. M. & Zevin, L. S. (1963). Rentgenowskaya diffraktometriya (X-ray diffractometry), Chap. 4. Moscow: Fizmatgiz.Google Scholar
First citation Kirk, D. & Caulfield, P. B. (1977). Location of diffractometer profiles in X-ray stress analysis. Adv. X-ray Anal. 20, 283–289.Google Scholar
First citation Kishino, S. (1973). Improved techniques of lattice parameter measurements using two X-ray beams. Adv. X-ray Anal. 16, 367–378.Google Scholar
First citation Kobayashi, J., Mizutani, I. & Schmidt, H. (1970). X-ray study on the lattice strains of ferroelectric iron iodine boracite Fe3B7O13. Phys. Rev. B, 1, 3801–3808.Google Scholar
First citation Kobayashi, J., Yamada, N. & Azumi, I. (1968). An X-ray method for accurate determination of lattice strain of crystals. Rev. Sci. Instrum. 39, 1647–1650.Google Scholar
First citation Kobayashi, J., Yamada, N. & Nakamura, T. (1963). Origin of the visibility of the antiparallel 180° domains in barium titanate. Phys. Rev. Lett. 11, 410–414.Google Scholar
First citation Korytár, D. (1984). Lateral lattice parameter variation measurement by means of a double crystal X-ray method with oscillating slit. Czech. J. Phys. B34, 1277–1281.Google Scholar
First citation Kossel, W. (1936). Messungen am vollständigen Reflexsystem eines Kristallgitters. Ann. Phys. (Leipzig), 26, 533–553.Google Scholar
First citation Kovalchuk, M. V., Kovev, E. K. & Pinsker, Z. G. (1975). The X-ray triple-crystal spectrometer and precision determination of Δdhkl. (In Russian.) Kristallografiya, 20, 142–148.Google Scholar
First citation Kshevetsky, S. A., Mikhailyuk, I. P., Ostapovich, M. V., Polyak, M. I., Remenyuk, P. I. & Fomin, V. G. (1979). Application of multiple diffraction to determination of lattice parameters. (In Russian.) Ukr. Fiz. Zh. 24, 1480–1485.Google Scholar
First citation Kshevetsky, S. A., Mikhalchenko, V. P., Stetsko, Yu. P. & Shelud'ko, S. A. (1985). The lattice parameter refinement of single crystals by means of multiple-wave diffractometry. (In Russian.) Ukr. Fiz. Zh. 30, 1843–1848.Google Scholar
First citation Kubena, J. & Holý, V. (1988). Precise relative X-ray measurement of the lattice parameter of silicon crystals with growth striations. J. Appl. Cryst. 21, 245–251.Google Scholar
First citation Kucharczyk, D. & Niklewski, T. (1979). Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature. J. Appl. Cryst. 12, 370–373.Google Scholar
First citation Kucharczyk, D., Pietraszko, A. & Łukaszewicz, K. (1976). Temperature dependence of lattice parameters of NaNO2 single crystals. Phys. Status Solidi A, 37, 287–294.Google Scholar
First citation Kucharczyk, D., Pietraszko, A. & Łukaszewicz, K. (1993). An automatic four-circle diffractometer designed for precise lattice-parameter determination. J. Appl. Cryst. 26, 467.Google Scholar
First citation Kudo, S. (1982). X-ray determination of incommensurate superlattices in K2SeO4 and (NH4)2BeF4. Jpn. J. Appl. Phys. 21, 255–258.Google Scholar
First citation Kurbatov, B. A., Zubenko, V. V. & Umansky, M. M. (1972). The use of the monochromator crystal with anomalous transmission of X-rays in precise lattice parameter measurements. (In Russian.) Kristallografiya, 17, 1058–1060.Google Scholar
First citation Lang, A. R. & Pang, G. (1995). A possible new route to precise lattice-parameter measurement of perfect crystals using the divergent-X-ray-beam method. J. Appl. Cryst. 28, 61–64.Google Scholar
First citation Larson, B. C. (1974). High-precision measurements of lattice parameter changes in neutron-irradiated copper. J. Appl. Phys. 45, 514–518.Google Scholar
First citation Leszczyński, M., Podlasin, S. & Suski, T. (1993). A 109 Pa high-pressure cell for X-ray and optical measurements. J. Appl. Cryst. 26, 1–4.Google Scholar
First citation Lider, V. V. & Rozhansky, V. N. (1967). A new X-ray method of precision lattice spacing determination by divergent-beam photograph. Fiz. Tverd. Tela (Leningrad), 9, 3539–3546.Google Scholar
First citation Lisoivan, V. I. (1974). Local determination of all the lattice parameters of single crystals. (In Russian.) Appar. Methody Rentgenovskogo Anal. 14, 151–157.Google Scholar
First citation Lisoivan, V. I. (1981). Experimental refinement of the angles between unit-cell axes. (In Russian.) Kristallografiya, 26, 458–463.Google Scholar
First citation Lisoivan, V. I. (1982). Measurements of unit-cell parameters on one-crystal spectrometer. (In Russian.) Novosibirsk: Nauka.Google Scholar
First citation Lisoivan, V. I. & Dikovskaya, R. R. (1969). Local precision determination of lattice constants of a single crystal. Prib. Tech. Eksp. No. 4, pp. 164–166; English transl: Instrum. Exp. Tech. (USSR), 4, 992–994.Google Scholar
First citation Lonsdale, K. (1947). Divergent-beam X-ray photography of crystals. Proc. R. Soc. London Ser. A, 240, 219–250.Google Scholar
First citation Luger, P. (1980). Modern X-ray analysis of single crystals. In particular, Chap. 4 and Section 4.2.2. Berlin: de Gruyter.Google Scholar
First citation Łukaszewicz, K., Kucharczyk, D., Malinowski, M. & Pietraszko, A. (1978). New model of the Bond diffractometer for precise determination of lattice parameters and thermal expansion of single crystals. Krist. Tech. 13, 561–567.Google Scholar
First citation Łukaszewicz, K., Pietraszko, A., Kucharczyk, D., Malinowski, M., Stępień-Damm, J. & Urbanowicz, E. (1976). Precyzyjne pomiary stałych sieciowych kryształów metoda Bonda (Precision measurements of lattice constants of crystals by the Bond method). Wrocław: Instytut Niskich Temperatur i Badań Strukturalnych PAN.Google Scholar
First citation Lutts, A. (1973). The geometrical distortion of deficiency conic sections and its influence on lattice-parameter determinations. J. Appl. Cryst. 6, 428–437.Google Scholar
First citation Lutts, A. & Gielen, P. (1971). The precise determination of the lattice parameter of α-iron and some of its alloys. J. Appl. Cryst. 4, 242–250.Google Scholar
First citation Lutts, A. H. (1968). Determination of lattice parameters by the Kossel and divergent X-ray beam techniques. Adv. X-ray Anal. 11, 345–358.Google Scholar
First citation Mackay, K. J. H. (1966). Proceedings of the IVth Congress on X-ray Optics and Microanalysis, pp. 544–554. Paris: Hermann.Google Scholar
First citation Main, P. & Woolfson, M. M. (1963). Accurate lattice parameters from Weissenberg photographs. Acta Cryst. 16, 731–733.Google Scholar
First citation Mauer, F. A., Hubbard, C. R., Piermarini, G. J. & Block, S. (1975). Measurement of anisotropic compressibilities by a single crystal diffractometer method. Adv. X-ray Anal. 18, 437–453.Google Scholar
First citation Mendelssohn, M. J. & Milledge, H. J. (1999). Divergent-beam technique used in a SEM to measure the cell parameters of isotopically distinct samples of LiF over the temperature range ~15–375 K. Acta Cryst. A55, 204–211.Google Scholar
First citation Mohr, P. J. & Taylor, B. N. (2000). CODATA recommended values of the fundamental physical constants. Rev. Mod. Phys. 72, 351–495.Google Scholar
First citation Morris, W. G. (1968). Crystal orientation and lattice parameters from Kossel lines. J. Appl. Phys. 39, 1813–1823.Google Scholar
First citation Nemiroff, M. (1982). Precise lattice-constant determinations using measured beam and crystal tilts. J. Appl. Cryst. 15, 375–377.Google Scholar
First citation Newman, B. A. (1970). The equation of pseudo-Kossel curves. J. Appl. Cryst. 3, 191–193.Google Scholar
First citation Newman, B. A. & Shrier, A. (1970). A new method of determining interplanar spacings with the back-reflection X-ray divergent beam technique. J. Appl. Cryst. 3, 280–281.Google Scholar
First citation Newman, B. A. & Weissmann, S. (1968). Strain inhomogeneities in lightly compressed tungsten crystals. J. Appl. Cryst. 1, 139–145.Google Scholar
First citation Obaidur, R. M. (2002). Energy-selective (+,+) monolithic monochromator and relative lattice-spacing measurement of Si wafers with synchrotron radiation. J. Synchrotron Rad. 9, 28–35.Google Scholar
First citation Ohama, N., Sakashita, H. & Okazaki, A. (1979). Improvement of high-angle double-crystal X-ray diffractometry (HADOX) for measuring temperature dependence of lattice constants. II. Practice. J. Appl. Cryst. 12, 455–459.Google Scholar
First citation Okada, Y. (1982). A high-temperature attachment for precise measurement of lattice parameters by Bond's method between room temperature and 1500 K. J. Phys. E, 15, 1060–1063.Google Scholar
First citation Okazaki, A. & Kawaminami, M. (1973a). Accurate measurement of lattice constants in a wide range of temperature: use of white X-ray and double-crystal diffractometry. Jpn. J. Appl. Phys. 12, 783–789.Google Scholar
First citation Okazaki, A. & Kawaminami, M. (1973b). Lattice constant of strontium titanate at low temperatures. Mater. Res. Bull. 8, 545–550.Google Scholar
First citation Okazaki, A. & Ohama, N. (1979). Improvement of high-angle double-crystal X-ray diffractometry (HADOX) for measuring temperature dependence of lattice constants. I. Theory. J. Appl. Cryst. 12, 450–454.Google Scholar
First citation Okazaki, A. & Soejima, Y. (2001). Ultra-high-angle double-crystal X-ray diffractometry (U-HADOX) for determining a change in the lattice spacing: theory. Acta Cryst. A57, 708–712.Google Scholar
First citation Parrish, W. (1960). Results of the IUCr precision lattice-parameter project. Acta Cryst. 13, 838–850.Google Scholar
First citation Parrish, W. & Wilson, A. J. C. (1959). Precision measurements of lattice parameters of polycrystalline specimens. International tables for X-ray crystallography, Vol. II, Chap. 4.7, pp. 216–234. Birmingham: Kynoch Press.Google Scholar
First citation Pick, M. A., Bickmann, K., Pofahl, E., Zwoll, K. & Wenzl, H. (1977). A new automatic triple-crystal X-ray diffractometer for the precision measurement of intensity distribution of Bragg diffraction and Huang scattering. J. Appl. Cryst. 10, 450–457.Google Scholar
First citation Pierron, E. D. & McNeely, J. B. (1969). Precise cell parameters of semiconductor crystals and their applications. Adv. X-ray Anal. 12, 343–353.Google Scholar
First citation Pietraszko, A., Tomaszewski, P. E. & Łukaszewicz, K. (1981). X-ray and optical study of the phase transition in LiCsSO4. Phase Transit. 2, 131–150.Google Scholar
First citation Pietraszko, A., Waśkowska, A., Olejnik, S. & Łukaszewicz, K. (1979). X-ray study of the phase transition in RbHSeO4. Phase Transit. 1, 99–106.Google Scholar
First citation Pihl, C. F., Bieber, R. L. & Schwuttke, G. H. (1973). Precision lattice parameter studies of ion-implanted silicon. Phys. Status Solidi A, 17, 359–369.Google Scholar
First citation Polcarová, M. & Zůra, J. (1977). A method for the determination of lattice parameters on single crystals. Czech. J. Phys. B27, 322–331.Google Scholar
First citation Popović, S. (1971). An X-ray diffraction method for lattice parameter measurements from corresponding Kα and Kβ reflexions. J. Appl. Cryst. 4, 240–241.Google Scholar
First citation Popović, S. (1974). Determination of unit-cell parameters of single crystals from rotation patterns. J. Appl. Cryst. 7, 291–292.Google Scholar
First citation Popović, S., Šljukić, M. & Hanic, F. (1974). Precise unit cell parameter and thermal expansion measurements of single crystals by X-ray diffraction. Phys. Status Solidi A, 23, 265–274.Google Scholar
First citation Post, B. (1975). Accurate lattice constants from multiple diffraction measurements. I. Geometry, techniques and systematic errors. J. Appl. Cryst. 8, 452–456.Google Scholar
First citation Potts, H. R. & Pearson, G. L. (1966). Annealing and arsenic over-pressure experiments on defects in gallium arsenide. J. Appl. Phys. 37, 2098–2103.Google Scholar
First citation Reeke, G. N. J. (1984). Eigenvalue filtering in the refinement of crystal and orientation parameters for oscillation photography. J. Appl. Cryst. 17, 238–243.Google Scholar
First citation Reichard, T. E. (1969). A high-precision Kossel camera for research and routine analytical use. Adv. X-ray Anal. 12, 188–207.Google Scholar
First citation Renninger, M. (1937). `Umweganregung', eine bisher unbeachtete Wechselwirkungserscheinung bei Raumgitterinterferezen. Z. Phys. 106, 141–176.Google Scholar
First citation Ridou, C., Rousseau, M. & Freund, A. (1977). Détermination précise des paramètres cristallins au voisinage de changement de phase cubique quadratique dans RbCaF3. J. Phys. (Paris), 38, L-359–L-363.Google Scholar
First citation Rossmanith, E. (1985). UMWEG – a computer program for calculation and graphical representation of Umweganregung patterns. Z. Kristallogr. 171, 253–254.Google Scholar
First citation Rossmann, M. G. (1979). Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting. J. Appl. Cryst. 12, 225–238.Google Scholar
First citation Rozhansky, V. H., Lider, V. V. & Lyutzau, V. G. (1966). An X-ray method for surface topography of crystal structure defects based on Kossel-line scanning. (In Russian.) Kristallografiya, 11, 701–703.Google Scholar
First citation Sasvári, J. & Zsoldos, É. (1980). Accurate lattice parameter measurements of epitaxial layers. Invited paper at International Symposium on Industrial Applications of X-ray Spectrometry and Diffractometry, Turawa, Poland, 15–18 April 1980.Google Scholar
First citation Schetelich, Ch. & Geist, V. (1993). Observation of X-ray Kossel patterns (`Gitterquelleninterferenzen') from quasicrystals. Phys. Status Solidi A, 136, 283–289.Google Scholar
First citation Schneider, J. & Weik, H. (1968). Z. Angew. Phys. 2, 75–79.Google Scholar
First citation Schwartzenberger, D. R. (1959). Philos. Mag. 4, 1242–1246.Google Scholar
First citation Schwarzenbach, D., Abrahams, S. C., Flack, H. D., Gonschorek, W., Hahn, Th., Huml, K., Marsh, R. E., Prince, E., Robertson, B. E., Rollett, J. S. & Wilson, A. J. C. (1989). Statistical descriptors in crystallography. Report of the International Union of Crystallography Subcommittee on Statistical Descriptors. Acta Cryst. A45, 63–75.Google Scholar
First citation Segmüller, A. (1970). Automated lattice parameter determination on single crystals. Adv. X-ray Anal. 13, 455–467.Google Scholar
First citation Shinoda, G., Isokawa, K. & Umeno, M. (1969). Kossel line microdiffraction study on precipitation of alpha from beta in copper zinc alloys. Adv. X-ray Anal. 12, 174–187.Google Scholar
First citation Shrier, A., Kalman, Z. H. & Weissmann, S. (1966). US Government Research Report AD 631 179.Google Scholar
First citation Shvyd'ko, Yu. V., Lerche, M., Jäschke, J., Lucht, M., Gerdau, E., Gerken, M., Rüter, H. D., Wille, H.-C., Becker, P., Alp, E. E., Sturhahn, W., Sutter, J. & Toellner, T. S. (2000). γ-ray wavelength standard for atomic scales. Phys. Rev. Lett. 85, 495–498.Google Scholar
First citation Shvyd'ko, Yu. V., Lucht, M., Gerdau, E., Lerche, M., Alp, E. E., Sturhahn, W., Sutter, J. & Toellner, T. S. (2002). Measuring wavelengths and lattice constants with the Mössbauer wavelength standard. J. Synchrotron Rad. 9, 17–23.Google Scholar
First citation Siegert, H., Becker, P. & Seyfried, P. (1984). Determination of silicon unit-cell parameters by precision measurements of Bragg plane spacings. Z. Phys. B, 56, 273–278.Google Scholar
First citation Singh, K. & Trigunayat, G. C. (1988). Accurate determination of lattice parameters from XRD oscillation photographs. J. Appl. Cryst. 21, 991.Google Scholar
First citation Skupov, V. D. & Uspeckaya, G. I. (1975). The combined X-ray spectrometer for deformation measurements in single crystals. (In Russian.) Prib. Tekh. Eksp. No. 2, pp. 210–213.Google Scholar
First citation Slade, J. J., Weissmann, S., Nakajima, K. & Hirabayshi, M. (1964). Stress–strain analysis of single cubic crystals and its application to the ordering of CuAu I. Paper II. J. Appl. Phys. 35, 3373–3385.Google Scholar
First citation Smakula, A. & Kalnajs, J. (1955). Precision determination of lattice constants with a Geiger-counter X-ray diffractometer. Phys. Rev. 99, 1737–1743.Google Scholar
First citation Soares, D. A. W. & Pimentel, C. A. (1983). Precision interplanar spacing measurements on boron-doped silicon. J. Appl. Cryst. 16, 486–492.Google Scholar
First citation Soejima, Y., Tomonaga, N., Onitsuka, H. & Okazaki, A. (1991). Two-dimensional intensity distribution in high-angle double-crystal X-ray diffractometry (HADOX). Z. Kristallogr. 195, 161–168.Google Scholar
First citation Spooner, F. J. & Wilson, C. G. (1973). The measurement of single-crystal lattice parameters using a double-diffraction technique. J. Appl. Cryst. 6, 132–135.Google Scholar
First citation Stępień, J. A., Auleytner, J. & Łukaszewicz, K. (1972). X-ray examination of the real structure of γ-irradiated NaClO3 single crystals. Phys. Status Solidi A, 10, 631–638.Google Scholar
First citation Stępień-Damm, J. A., Kucharczyk, D., Urbanowicz, E. & Łukaszewicz, K. (1975). Effect of γ-irradiation on the thermal expansion of sodium chlorate NaClO3. Bull. Acad. Pol. Sci. Ser. Sci. Chim. Geol. Geogr. 23, 985–988.Google Scholar
First citation Stępień-Damm, J. A., Suski, T., Meysner, L., Hilczer, B. & Łukaszewicz, K. (1974). Effect of X-ray irradiation on the lattice constant of TGS crystal in the vicinity of phase transition. Bull. Acad. Pol. Sci. Ser. Sci. Chim. Geol. Geogr. 22, 685–688.Google Scholar
First citation Stout, G. H. & Jensen, L. H. (1968). X-ray structure determination. London: Macmillan.Google Scholar
First citation Straumanis, M. E., Borgeaud, P. & James, W. J. (1961). Perfection of the lattice of dislocation-free silicon, studied by the lattice-constant and density method. J. Appl. Phys. 32, 1382–1384.Google Scholar
First citation Straumanis, M. & Ieviņš, A. (1940). Die Präzizionsbestimmung von Gitterkonstanten nach der asymmetrischen Methode. Berlin: Springer. [Reprinted by Edwards Brothers Inc., Ann Arbor, Michigan (1948).]Google Scholar
First citation Takano, Y. & Maki, M. (1972). X-ray measurement of lattice strain of oxygen diffused silicon. Acta Cryst. A28, S171.Google Scholar
First citation Terminasov, Yu. S. & Tuzov, L. V. (1964). The double-diffraction of X-rays in crystals. (In Russian.) Usp. Phys. Nauk, 83, 223–258. (English transl: Sov. Phys. Usp. 7, 734.)Google Scholar
First citation Thomsen, J. S. (1974). High-precision X-ray spectroscopy. X-ray spectroscopy, edited by L. V. Azároff, pp. 26–132. New York: McGraw-Hill.Google Scholar
First citation Thomsen, J. S. & Yap, Y. (1968). Effect of statistical counting errors on wavelengths criteria for X-ray spectra. J. Res. Natl Bur. Stand. Sect. A, 72, 187–205.Google Scholar
First citation Tixier, R. & Waché, C. (1970). Kossel patterns. J. Appl. Cryst. 3, 466–485.Google Scholar
First citation Ullrich, H.-J. (1967). Precision lattice parameter measurements by interferences from lattice sources (Kossel lines) and divergent beam X-ray diffraction (pseudo-Kossel-lines) in back reflection. Phys. Status Solidi, 20, K113–K117.Google Scholar
First citation Ullrich, H.-J. & Schulze, G. E. R. (1972). Röntgenographische Mikrobeugungsuntersuchungen an kristallinen Festkörpern mittels Gitterquelleninterferenzen (Kossel-Linien) und Weitwinkelinterferenzen (Pseudo-Kossel-Linien). Krist. Tech. 7, 207–220.Google Scholar
First citation Umansky, M. M. (1960). Apparatura rentgenostrukturnykh issledovanij. Moscow: Fizmatgiz.Google Scholar
First citation Urbanowicz, E. (1981a). The influence of in-plane collimation on the precision and accuracy of lattice-constant determination by the Bond method. I. A mathematical model. Statistical errors. Acta Cryst. A37, 364–368.Google Scholar
First citation Urbanowicz, E. (1981b). The influence of in-plane collimation on the precision and accuracy of lattice-constant determination by the Bond method. II. Verification of the mathematical model. Systematic errors. Acta Cryst. A37, 369–373.Google Scholar
First citation Walder, V. & Burke, J. (1971). The elimination of specimen and beam tilt errors in the Bond method of precision lattice parameter determinations. J. Appl. Cryst. 4, 337–339.Google Scholar
First citation Weisz, O., Cochran, W. & Cole, W. F. (1948). The accurate determination of cell dimensions from single-crystal X-ray photographs. Acta Cryst. 1, 83–88.Google Scholar
First citation Wilson, A. J. C. (1950). Geiger-counter X-ray spectrometer – influence of size and absorption coefficient of specimen on position and shape of powder diffraction maxima. J. Sci. Instrum. 27, 321–325.Google Scholar
First citation Wilson, A. J. C. (1963). Mathematical theory of X-ray powder diffractometry. Philips Technical Library. Eindhoven: Centrex Publishing Company.Google Scholar
First citation Wilson, A. J. C. (1965). The location of peaks. Br. J. Appl. Phys. 16, 665–674.Google Scholar
First citation Wilson, A. J. C. (1967). Statistical variance of line-profile parameters. Measures of intensity, location and dispersion. Acta Cryst. 23, 888–898.Google Scholar
First citation Wilson, A. J. C. (1968). Statistical variance of line-profile parameters. Measures of intensity, location and dispersion: Corrigenda. Acta Cryst. A24, 478.Google Scholar
First citation Wilson, A. J. C. (1969). Statistical variance of line-profile parameters. Measures of intensity, location and dispersion: Addendum. Acta Cryst. A25, 584–585.Google Scholar
First citation Wilson, A. J. C. (1980). Accuracy in methods of lattice-parameter measurement. Natl Bur. Stand. (US) Spec. Publ. No. 567. Proceedings of Symposium on Accuracy in Powder Diffraction, NBS, Gaithersburg, MD, USA, 11–15 June 1979.Google Scholar
First citation Windisch, D. & Becker, P. (1990). Silicon lattice parameters as an absolute scale of length for high precision measurements of fundamental constants. Phys. Status Solidi A, 118, 379–388.Google Scholar
First citation Wołcyrz, M. & Łukaszewicz, K. (1982). The evaluation of crystal perfection by means of the asymmetric Bragg reflections. J. Appl. Cryst. 15, 406–411.Google Scholar
First citation Wołcyrz, M., Pietraszko, A. & Łukaszewicz, K. (1980). The application of asymmetric Bragg reflections in the Bond method of measuring lattice parameters. J. Appl. Cryst. 13, 12–16.Google Scholar
First citation Wölfel, E. R. (1971). A new film instrument for the exploration of reciprocal space. J. Appl. Cryst. 4, 297–302.Google Scholar
First citation Woolfson, M. M. (1970). An introduction to X-ray crystallography. Cambridge University Press.Google Scholar
First citation Yakowitz, H. (1966a). Effect of sample thickness and operating voltage on the contrast of Kossel transmission photographs. J. Appl. Phys. 37, 4455–4458.Google Scholar
First citation Yakowitz, H. (1966b). Precision of cubic lattice parameter measurement by the Kossel technique. The electron microprobe, edited by T. D. McKinley, K. F. J. Heinrich & D. B. Wittry, pp. 417–438. New York: John Wiley.Google Scholar
First citation Yakowitz, H. (1969). The divergent beam X-ray technique. Advances in electronics and electron physics, edited by A. J. Tousimis & L. Marton, Suppl. 6, pp. 361–431. New York: Academic Press.Google Scholar
First citation Yakowitz, H. (1972). Use of divergent-beam X-ray diffraction to measure lattice expansion in LiF as a function of thermal-neutron dose up to 6 ×1016 nvt. J. Appl. Phys. 43, 4793–4794.Google Scholar
First citation Zolotoyabko, E., Sander, B., Komem, Y. & Kantor, B. (1993). Improved strain analysis in semiconductor crystals by X-ray diffractometry enhanced with ultrasound. Appl. Phys. Lett. 63, 1540–1542.Google Scholar