International Tables for Crystallography (2006). Vol. C. ch. 5.3, pp. 505-536
https://doi.org/10.1107/97809553602060000597 |
Chapter 5.3. X-ray diffraction methods: single crystal
Contents
- 5.3. X-ray diffraction methods: single crystal (pp. 505-536) | html | pdf | chapter contents |
- 5.3.1. Introduction (pp. 505-508) | html | pdf |
- 5.3.2. Photographic methods (pp. 508-516) | html | pdf |
- 5.3.2.1. Introduction (p. 508) | html | pdf |
- 5.3.2.2. The Laue method (p. 508) | html | pdf |
- 5.3.2.3. Moving-crystal methods (pp. 508-510) | html | pdf |
- 5.3.2.3.1. Rotating-crystal method (pp. 508-509) | html | pdf |
- 5.3.2.3.2. Moving-film methods (p. 509) | html | pdf |
- 5.3.2.3.3. Combined methods (p. 509) | html | pdf |
- 5.3.2.3.4. Accurate and precise lattice-parameter determinations (pp. 509-510) | html | pdf |
- 5.3.2.3.5. Photographic cameras for investigation of small lattice-parameter changes (p. 510) | html | pdf |
- 5.3.2.4. The Kossel method and divergent-beam techniques (pp. 510-516) | html | pdf |
- 5.3.3. Methods with counter recording (pp. 516-534) | html | pdf |
- 5.3.3.1. Introduction (p. 516) | html | pdf |
- 5.3.3.2. Standard diffractometers (pp. 516-517) | html | pdf |
- 5.3.3.3. Data processing and optimization of the experiment (pp. 517-520) | html | pdf |
- 5.3.3.4. One-crystal spectrometers (pp. 521-526) | html | pdf |
- 5.3.3.4.1. General characteristics (p. 521) | html | pdf |
- 5.3.3.4.2. Development of methods based on an asymmetric arrangement and their applications (pp. 521-522) | html | pdf |
- 5.3.3.4.3. The Bond method (pp. 522-526) | html | pdf |
- 5.3.3.4.3.1. Description of the method (pp. 522-523) | html | pdf |
- 5.3.3.4.3.2. Systematic errors (pp. 523-524) | html | pdf |
- 5.3.3.4.3.3. Development of the Bond method and its applications (pp. 524-525) | html | pdf |
- 5.3.3.4.3.4. Advantages and disadvantages of the Bond method (p. 526) | html | pdf |
- 5.3.3.5. Limitations of traditional methods (p. 526) | html | pdf |
- 5.3.3.6. Multiple-diffraction methods (pp. 526-528) | html | pdf |
- 5.3.3.7. Multiple-crystal – pseudo-non-dispersive techniques (pp. 528-533) | html | pdf |
- 5.3.3.8. Optical and X-ray interferometry – a non-dispersive technique (pp. 533-534) | html | pdf |
- 5.3.3.9. Lattice-parameter and wavelength standards (p. 534) | html | pdf |
- 5.3.4. Final remarks (pp. 534-536) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 5.3.2.1. (a) Photographic recording of lattice-parameter changes (p. 511) | html | pdf |
- Fig. 5.3.2.2. Schematic representation of the origin of the Kossel lines (p. 512) | html | pdf |
- Fig. 5.3.2.3. (a) The Kossel pattern from iron and (b) the corresponding stereographic projection (Tixier & Waché, 1970) (p. 513) | html | pdf |
- Fig. 5.3.2.4. Lens-shaped figures formed by pairs of intersecting conics (p. 514) | html | pdf |
- Fig. 5.3.2.5. Schematic representation of the multiple-exposure technique (after Fischer & Harris, 1970) (p. 514) | html | pdf |
- Fig. 5.3.3.1. Determination of reciprocal-lattice angles on the θ circle (after Luger, 1980) (p. 517) | html | pdf |
- Fig. 5.3.3.2. The extrapolated-peak procedure (after Bearden, 1933) (p. 518) | html | pdf |
- Fig. 5.3.3.3. Determination of the Bragg angle by means of the one-crystal spectrometer using (a) an asymmetric or (b) a symmetric arrangement (p. 521) | html | pdf |
- Fig. 5.3.3.4. Schematic representation of the Bond (1960) method (p. 522) | html | pdf |
- Fig. 5.3.3.5. Schematic representation of multiple diffraction in reciprocal space (after Post, 1975) (p. 526) | html | pdf |
- Fig. 5.3.3.6. Schematic representation of the multiple-diffraction method (p. 527) | html | pdf |
- Fig. 5.3.3.7. The multiple-diffraction pattern at the 222 position in germanium (Cole, Chambers & Dunn, 1962) (p. 527) | html | pdf |
- Fig. 5.3.3.8. Schematic representation of the double-crystal spectrometer (p. 528) | html | pdf |
- Fig. 5.3.3.9. Schematic representation of the double-crystal arrangement of Hart & Lloyd (1975) for the examination of epitaxic layers (p. 529) | html | pdf |
- Fig. 5.3.3.10. Schematic representation of the double-crystal arrangement of Okazaki & Kawaminami (1973a); white incident X-rays are used (p. 529) | html | pdf |
- Fig. 5.3.3.11. Schematic representation of the triple-crystal spectrometer developed by Buschert (1965) (after Hart, 1981) (p. 530) | html | pdf |
- Fig. 5.3.3.12. Schematic representation of the double-beam comparator of Hart (1969) (p. 531) | html | pdf |
- Fig. 5.3.3.13. The double-axis lattice-spacing comparator of Ando, Bailey & Hart (1978); a triple-diffracted beam is used (p. 532) | html | pdf |
- Fig. 5.3.3.14. Schematic representation of the double-beam triple-crystal spectrometer of Buschert et al (p. 532) | html | pdf |
- Fig. 5.3.3.15. The geometry of the diffractometer used by Fewster & Andrew (1995) (p. 533) | html | pdf |
- Fig. 5.3.3.16. Optical and X-ray interferometry (p. 533) | html | pdf |
- Fig. 5.3.3.17. Portion of a dual-channel recording of X-ray and optical fringes (Deslattes, 1969) (p. 533) | html | pdf |
- Fig. 5.3.3.18. Synchrotron radiation, SR, from the bending magnet incident on the Si(111) double-crystal monochromator and, after four reflections from the monolithic monochromator (0.1410 nm), impinges on sample Si(444) (p. 534) | html | pdf |
- Fig. 5.3.3.19. Synchrotron radiation, SR, from the bending magnet incident on the Si(111) double-crystal monochromator and, after four reflections from the monolithic monochromator (0.1612 nm), impinges on sample Si(153) (p. 535) | html | pdf |
- Fig. 5.3.3.20. Experimental set-up for measuring lattice parameters (p. 535) | html | pdf |