International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.1, p. 340

Section 3.1.2.2.1. Description of a prototype example

J.-C. Tolédanod*

3.1.2.2.1. Description of a prototype example

| top | pdf |

Fig. 3.1.2.1[link] represents a unit cell of a speculative crystalline structure with a simple tetragonal Bravais lattice, in which a phase transition is assumed to take place. Negative ions (filled circles) occupy the vertices of the tetragonal cell (lattice constants [a = b \ne c]). A positive ion [M{^+}] is at the centre of the cell.

[Figure 3.1.2.1]

Figure 3.1.2.1 | top | pdf |

Model of a structural transition. The filled circles at the vertices of the cell are singly charged negative ions and the empty circle at the centre is a singly charged positive ion. d is an arbitrary displacement of the central ion.

This configuration is assumed to be the equilibrium state of the system above the temperature [T_c] of the transition (see Fig. 3.1.2.2[link]). Below [T_c], equilibrium is assumed to correspond to a structure that only differs from the high-temperature structure by the fact that [M^+] lies out of the centre of the cell in an unspecified direction. Hence the latter equilibrium is characterized by the magnitude and direction of the displacement [{\bf d}_0 = (d_x, d_y, d_z)] of the central ion. At high temperature, the equilibrium corresponds to [{\bf d}_0 = 0].

[Figure 3.1.2.2]

Figure 3.1.2.2 | top | pdf |

(a) Variation of the free energy as function of the amplitude of the displacement of the central ion in Fig. 3.1.2.1[link]. (b) Typical temperature dependence in the vicinity of [T_c] of the coefficient of a second-degree term in the Landau expansion (3.1.2.1)[link] whenever this coefficient is strictly positive at [T_c]: one can see that this positivity is also valid slightly above and below [T_c].








































to end of page
to top of page