Origin at centre (mmm)
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 2 0, y, 0 | (4) 2 x, 0, 0 |
(5) -1 0, 0, 0 | (6) m x, y, 0 | (7) m x, 0, z | (8) m 0, y, z |
Generators selected (1); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -x, y, -z | (4) x, -y, -z | (5) -x, -y, -z | (6) x, y, -z | (7) x, -y, z | (8) -x, y, z |
| no conditions |
| | Special: no extra conditions |
| x, y, 1/2 | -x, -y, 1/2 | -x, y, 1/2 | x, -y, 1/2 |
| |
| x, y, 0 | -x, -y, 0 | -x, y, 0 | x, -y, 0 |
| |
| x, 0, z | -x, 0, z | -x, 0, -z | x, 0, -z |
| |
| 0, y, z | 0, -y, z | 0, y, -z | 0, -y, -z |
| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
Symmetry of special projections
Along [001] 2mm
Origin at 0, 0, z | Along [100] 2mm a' = c Origin at x, 0, 0 | Along [010] 2mm a' = c Origin at 0, y, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] m2m (2mm, 18) | 1; 3; 6; 8 |
| [2] 2mm (18) | 1; 4; 6; 7 |
| [2] mm2 (15) | 1; 2; 7; 8 |
| [2] 222 (13) | 1; 2; 3; 4 |
| [2] 112/m (11) | 1; 2; 5; 6 |
| [2] 12/m1 (2/m11, 6) | 1; 3; 5; 7 |
| [2] 2/m11 (6) | 1; 4; 5; 8 |
IIb | [2] cmm (c' = 2c) (mcm, 22); [2] mcm (c' = 2c) (22); [2] ccm (c' = 2c) (21) |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [2] mmm (c' = 2c) (20) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 4/mmm (39); [2] 42/mmc (41); [3] 6/mmm (73) |