International
Tables for Crystallography Volume F Crystallography of biological macromolecules Edited by M. G. Rossmann and E. Arnold © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. F. ch. 19.4, p. 442
Section 19.4.4.3. The statistical labelling method
aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA, and bDepartments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA |
In many biological assemblies, multiple copies of a given subunit are found. In such cases, statistical labelling methods provide useful information. The basic concept is to produce two samples in which labelled subunits are randomly mixed with unlabelled subunits within the particles, and in which the ratios of labelled to unlabelled subunits is different. The difference in the scattering from the two samples will then contain shape and orientation information for the subunits (Fujiwara & Mendelson, 1996). A simple case is that of a dimer in a larger complex. Random introduction of equimolar labelled (D) and unlabelled (H) subunits will result in a mixture of complexes, where HH:HD:DH:DD = 1:1:1:1. A sample can be prepared with an equimolar mixture of all H and all D so that HH:DD = 1:1. The difference in scattering between these samples will be simply the interference cross term for the dimer, but at half the weight it would have in the case where the subunits were distinctly labelled.
References
