International
Tables for
Crystallography
Volume F
Crystallography of biological molecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 8.1, p. 165   | 1 | 2 |

Section 8.1.8.1. Atomic and ultra high resolution macromolecular crystallography

J. R. Helliwella*

aDepartment of Chemistry, University of Manchester, M13 9PL, England
Correspondence e-mail: john.helliwell@man.ac.uk

8.1.8.1. Atomic and ultra high resolution macromolecular crystallography

| top | pdf |

The use of high SR intensity, cryo-freezing of a protein crystal to largely overcome radiation damage and sensitive, automatic area detectors (CCDs and/or image plates) is allowing diffraction data to be recorded at resolutions equivalent to smaller molecule (chemical) crystallography. In a growing number of protein crystal structure studies, atomic resolution (1.2 Å or better) is achievable (Dauter et al., 1997[link]). The `X-ray data to parameter' ratio can be favourable enough for single and double bonds, e.g. in carboxyl side chains, to be resolved [Fig. 8.1.8.1[link]; Deacon et al. (1997)[link] for concanavalin A at 0.94 Å resolution]. Along with this bond distance precision, one can see the reactive proton directly. This approach complements H/D exchange neutron diffraction studies. Neutron studies have recently expanded in scope by employing Laue geometry in a synergistic development with SR Laue diffraction (Helliwell & Wilkinson, 1994[link]; Helliwell, 1997b[link]; Habash et al., 1997[link], 2000[link]). The scope and accuracy of protein crystal structures has been transformed.

[Figure 8.1.8.1]

Figure 8.1.8.1| top | pdf |

Determination of the protonation states of carboxylic acid side chains in proteins via hydrogen atoms and resolved single and double bond lengths. After Deacon et al. (1997)[link] using CHESS. Reproduced by permission of The Royal Society of Chemistry.

References

First citation Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1997). The benefits of atomic resolution. Curr. Opin. Struct. Biol. 7, 681–688.Google Scholar
First citation Deacon, A., Gleichmann, T., Kalb (Gilboa), A. J., Price, H., Raftery, J., Bradbrook, G., Yariv, J. & Helliwell, J. R. (1997). The structure of concanavalin A and its bound solvent determined with small-molecule accuracy at 0.94 Å resolution. J. Chem. Soc. Faraday Trans. 93, 4305–4312.Google Scholar
First citation Habash, J., Raftery, J., Nuttall, R., Price, H. J., Wilkinson, C., Kalb (Gilboa), A. J. & Helliwell, J. R. (2000). Direct determination of the positions of the deuterium atoms of the bound water in concanavalin A by neutron Laue crystallography. Acta Cryst. D56, 541–550.Google Scholar
First citation Habash, J., Raftery, J., Weisgerber, S., Cassetta, A., Lehmann, M. S., Hoghoj, P., Wilkinson, C., Campbell, J. W. & Helliwell, J. R. (1997). Neutron Laue diffraction study of concanavalin A: the proton of Asp28. J. Chem. Soc. Faraday Trans. 93, 4313–4317.Google Scholar
First citation Helliwell, J. R. (1997b). Neutron Laue diffraction does it faster. Nature Struct. Biol. 4, 874–876.Google Scholar
First citation Helliwell, J. R. & Wilkinson, C. (1994). X-ray and neutron Laue diffraction. In Neutron and synchrotron radiation for condensed matter studies, Vol. 3, edited by J. Baruchel, J. L. Hodeau, M. S. Lehmann, J. R. Regnard & C. Schlenker, ch. 12. Berlin: Springer Verlag.Google Scholar








































to end of page
to top of page