International Tables for Crystallography (2019). Vol. H. ch. 2.1, pp. 26-50
https://doi.org/10.1107/97809553602060000936

Chapter 2.1. Instrumentation for laboratory X-ray scattering techniques

Contents

  • 2.1. Instrumentation for laboratory X-ray scattering techniques  (pp. 26-50) | html | pdf | chapter contents |
    • 2.1.1. Introduction  (p. 26) | html | pdf |
    • 2.1.2. Scope and terminology  (p. 26) | html | pdf |
    • 2.1.3. Historical overview  (pp. 26-28) | html | pdf |
      • 2.1.3.1. From film cameras to diffractometers  (pp. 26-28) | html | pdf |
        • 2.1.3.1.1. Film cameras  (pp. 26-27) | html | pdf |
        • 2.1.3.1.2. Diffractometers  (pp. 27-28) | html | pdf |
      • 2.1.3.2. Recent years  (p. 28) | html | pdf |
    • 2.1.4. The platform concept – fitting the instrument to the need  (pp. 28-32) | html | pdf |
      • 2.1.4.1. Basic design principles and instrument geometry considerations  (pp. 28-30) | html | pdf |
      • 2.1.4.2. Range of hardware  (pp. 30-31) | html | pdf |
      • 2.1.4.3. Range of applications  (pp. 31-32) | html | pdf |
    • 2.1.5. Goniometer designs  (pp. 32-36) | html | pdf |
      • 2.1.5.1. Geometrical conventions and scan modes  (pp. 32-34) | html | pdf |
        • 2.1.5.1.1. Goniometer base  (pp. 32-34) | html | pdf |
        • 2.1.5.1.2. Specimen stage  (p. 34) | html | pdf |
      • 2.1.5.2. Accuracy and precision  (pp. 34-35) | html | pdf |
      • 2.1.5.3. Hybrid beam-path systems  (pp. 35-36) | html | pdf |
        • 2.1.5.3.1. Multiple-beam-path systems  (p. 35) | html | pdf |
        • 2.1.5.3.2. Non-coplanar beam-path systems  (pp. 35-36) | html | pdf |
    • 2.1.6. X-ray sources and optics  (pp. 36-45) | html | pdf |
      • 2.1.6.1. X-ray beam quality measures  (pp. 36-37) | html | pdf |
      • 2.1.6.2. X-ray sources  (pp. 37-39) | html | pdf |
        • 2.1.6.2.1. Generation of X-rays and the X-ray spectrum  (p. 37) | html | pdf |
        • 2.1.6.2.2. Types of X-ray sources  (pp. 37-39) | html | pdf |
          • 2.1.6.2.2.1. Fixed-target X-ray sources  (pp. 38-39) | html | pdf |
          • 2.1.6.2.2.2. Moving-target X-ray sources  (p. 39) | html | pdf |
        • 2.1.6.2.3. Performance of X-ray sources  (p. 39) | html | pdf |
      • 2.1.6.3. X-ray optics  (pp. 39-45) | html | pdf |
        • 2.1.6.3.1. Absorptive X-ray optics  (pp. 40-41) | html | pdf |
          • 2.1.6.3.1.1. Apertures  (p. 40) | html | pdf |
          • 2.1.6.3.1.2. Metal filters  (pp. 40-41) | html | pdf |
        • 2.1.6.3.2. Diffractive X-ray optics  (pp. 41-43) | html | pdf |
          • 2.1.6.3.2.1. Single-reflection monochromators  (pp. 41-42) | html | pdf |
          • 2.1.6.3.2.2. Multiple-reflection monochromators  (pp. 42-43) | html | pdf |
        • 2.1.6.3.3. Reflective X-ray optics  (pp. 43-44) | html | pdf |
          • 2.1.6.3.3.1. Multilayer mirrors  (pp. 43-44) | html | pdf |
          • 2.1.6.3.3.2. Capillaries  (p. 44) | html | pdf |
        • 2.1.6.3.4. Combi-optics  (pp. 44-45) | html | pdf |
    • 2.1.7. X-ray detectors  (pp. 45-49) | html | pdf |
      • 2.1.7.1. Detector parameters  (pp. 45-46) | html | pdf |
      • 2.1.7.2. Detector types  (pp. 46-48) | html | pdf |
        • 2.1.7.2.1. Scintillation counters  (pp. 46-47) | html | pdf |
        • 2.1.7.2.2. Gas-ionization detectors  (pp. 47-48) | html | pdf |
          • 2.1.7.2.2.1. Wire-based proportional counters  (p. 47) | html | pdf |
          • 2.1.7.2.2.2. Micro-gap detectors  (pp. 47-48) | html | pdf |
        • 2.1.7.2.3. Semiconductor detectors  (p. 48) | html | pdf |
          • 2.1.7.2.3.1. The Si(Li) detector  (p. 48) | html | pdf |
          • 2.1.7.2.3.2. Silicon micro-strip and silicon pixel detectors  (p. 48) | html | pdf |
          • 2.1.7.2.3.3. CCD and CMOS detectors  (p. 48) | html | pdf |
      • 2.1.7.3. Position sensitivity and associated scanning modes  (pp. 48-49) | html | pdf |
        • 2.1.7.3.1. Pixel size, spatial resolution and angular resolution  (p. 49) | html | pdf |
        • 2.1.7.3.2. Dimensionality  (p. 49) | html | pdf |
        • 2.1.7.3.3. Size and shape  (p. 49) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 2.1.1. Diffraction of X-rays by (a) a rotating single crystal and (b) an ideal powder  (p. 28) | html | pdf |
      • Fig. 2.1.2. The basic design principle of modern diffractometers  (p. 29) | html | pdf |
      • Fig. 2.1.3. Transformation between the Bragg–Brentano and Debye–Scherrer geometries using a incident-beam X-ray optical bench  (p. 29) | html | pdf |
      • Fig. 2.1.4. Bragg–Brentano geometry  (p. 30) | html | pdf |
      • Fig. 2.1.5. Bragg–Brentano geometry  (p. 30) | html | pdf |
      • Fig. 2.1.6. Laboratory coordinates and geometric definition of the coaxial goniometer axes ω and 2θ  (p. 33) | html | pdf |
      • Fig. 2.1.7. Goniometer base configurations and scan modes suitable for both Bragg–Brentano or Debye–Scherrer geometry  (p. 33) | html | pdf |
      • Fig. 2.1.8. Goniometer base configurations and scan modes suitable for the Debye–Scherrer geometry only  (p. 33) | html | pdf |
      • Fig. 2.1.9. Geometric definition of the Eulerian and kappa geometries with identical specimen orientation in space  (p. 34) | html | pdf |
      • Fig. 2.1.10. Example of counterbalancing of a vertical θ–θ goniometer  (p. 35) | html | pdf |
      • Fig. 2.1.11. Illustration of coplanar and in-plane diffraction  (p. 35) | html | pdf |
      • Fig. 2.1.12. Sophisticated IP-GID implementation by placing two goniometers vertically with respect to each other, allowing simultaneous coplanar and in-plane measurements using two independent scattered-beam optical X-ray benches (compare with Fig  (p. 36) | html | pdf |
      • Fig. 2.1.13. Illustration of the working principle of laboratory X-ray sources: (a) fixed target, (b) rotating target, (c) liquid-metal jet  (p. 38) | html | pdf |
      • Fig. 2.1.14. Apertures used for beam collimation  (p. 40) | html | pdf |
      • Fig. 2.1.15. Motorized switchable (a) and rotating (b) absorbers  (p. 41) | html | pdf |
      • Fig. 2.1.16. Illustration of flat single-reflection monochromators  (p. 41) | html | pdf |
      • Fig. 2.1.17. Illustration of curved and ground single-reflection monochromators  (p. 42) | html | pdf |
      • Fig. 2.1.18. Illustration of multiple-reflection monochromators  (p. 42) | html | pdf |
      • Fig. 2.1.19. Schematic of graded multilayer mirrors  (p. 43) | html | pdf |
      • Fig. 2.1.20. Examples for orthogonally positioned curved mirrors for beam conditioning  (p. 43) | html | pdf |
      • Fig. 2.1.21. Schematic of monocapillary optics  (p. 44) | html | pdf |
      • Fig. 2.1.22. Schematic of polycapillary optics  (p. 44) | html | pdf |
      • Fig. 2.1.23. Incident and diffracted beam combi-optics for switching between (a) the Bragg–Brentano geometry and (b) the parallel-beam geometry  (p. 45) | html | pdf |
      • Fig. 2.1.24. Example of the use of highly sophisticated incident- and diffracted-beam combi-optics in combination with a rotatable X-ray source and a double detector arm  (p. 45) | html | pdf |
    • Tables
      • Table 2.1.1. Types of beam-path components available in laboratory X-ray powder diffraction  (p. 31) | html | pdf |
      • Table 2.1.2. X-ray applications for with modern X-ray diffractometers  (p. 32) | html | pdf |
      • Table 2.1.3. Characteristic wavelengths and absorption edges of metal filters in common use  (p. 37) | html | pdf |
      • Table 2.1.4. Maximum target loading and specific loading for some selected fixed- and moving-target X-ray sources  (p. 39) | html | pdf |
      • Table 2.1.5. Comparison of divergence and intensity for several types of germanium channel-cut monochromators  (p. 43) | html | pdf |
      • Table 2.1.6. Important detector properties at 8 keV as reported by various vendors  (p. 47) | html | pdf |