International Tables for Crystallography (2019). Vol. H. ch. 2.1, pp. 26-50
https://doi.org/10.1107/97809553602060000936 |
Chapter 2.1. Instrumentation for laboratory X-ray scattering techniques
Contents
- 2.1. Instrumentation for laboratory X-ray scattering techniques (pp. 26-50) | html | pdf | chapter contents |
- 2.1.1. Introduction (p. 26) | html | pdf |
- 2.1.2. Scope and terminology (p. 26) | html | pdf |
- 2.1.3. Historical overview (pp. 26-28) | html | pdf |
- 2.1.4. The platform concept – fitting the instrument to the need (pp. 28-32) | html | pdf |
- 2.1.5. Goniometer designs (pp. 32-36) | html | pdf |
- 2.1.6. X-ray sources and optics (pp. 36-45) | html | pdf |
- 2.1.6.1. X-ray beam quality measures (pp. 36-37) | html | pdf |
- 2.1.6.2. X-ray sources (pp. 37-39) | html | pdf |
- 2.1.6.3. X-ray optics (pp. 39-45) | html | pdf |
- 2.1.7. X-ray detectors (pp. 45-49) | html | pdf |
- 2.1.7.1. Detector parameters (pp. 45-46) | html | pdf |
- 2.1.7.2. Detector types (pp. 46-48) | html | pdf |
- 2.1.7.3. Position sensitivity and associated scanning modes (pp. 48-49) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 2.1.1. Diffraction of X-rays by (a) a rotating single crystal and (b) an ideal powder (p. 28) | html | pdf |
- Fig. 2.1.2. The basic design principle of modern diffractometers (p. 29) | html | pdf |
- Fig. 2.1.3. Transformation between the Bragg–Brentano and Debye–Scherrer geometries using a incident-beam X-ray optical bench (p. 29) | html | pdf |
- Fig. 2.1.4. Bragg–Brentano geometry (p. 30) | html | pdf |
- Fig. 2.1.5. Bragg–Brentano geometry (p. 30) | html | pdf |
- Fig. 2.1.6. Laboratory coordinates and geometric definition of the coaxial goniometer axes ω and 2θ (p. 33) | html | pdf |
- Fig. 2.1.7. Goniometer base configurations and scan modes suitable for both Bragg–Brentano or Debye–Scherrer geometry (p. 33) | html | pdf |
- Fig. 2.1.8. Goniometer base configurations and scan modes suitable for the Debye–Scherrer geometry only (p. 33) | html | pdf |
- Fig. 2.1.9. Geometric definition of the Eulerian and kappa geometries with identical specimen orientation in space (p. 34) | html | pdf |
- Fig. 2.1.10. Example of counterbalancing of a vertical θ–θ goniometer (p. 35) | html | pdf |
- Fig. 2.1.11. Illustration of coplanar and in-plane diffraction (p. 35) | html | pdf |
- Fig. 2.1.12. Sophisticated IP-GID implementation by placing two goniometers vertically with respect to each other, allowing simultaneous coplanar and in-plane measurements using two independent scattered-beam optical X-ray benches (compare with Fig (p. 36) | html | pdf |
- Fig. 2.1.13. Illustration of the working principle of laboratory X-ray sources: (a) fixed target, (b) rotating target, (c) liquid-metal jet (p. 38) | html | pdf |
- Fig. 2.1.14. Apertures used for beam collimation (p. 40) | html | pdf |
- Fig. 2.1.15. Motorized switchable (a) and rotating (b) absorbers (p. 41) | html | pdf |
- Fig. 2.1.16. Illustration of flat single-reflection monochromators (p. 41) | html | pdf |
- Fig. 2.1.17. Illustration of curved and ground single-reflection monochromators (p. 42) | html | pdf |
- Fig. 2.1.18. Illustration of multiple-reflection monochromators (p. 42) | html | pdf |
- Fig. 2.1.19. Schematic of graded multilayer mirrors (p. 43) | html | pdf |
- Fig. 2.1.20. Examples for orthogonally positioned curved mirrors for beam conditioning (p. 43) | html | pdf |
- Fig. 2.1.21. Schematic of monocapillary optics (p. 44) | html | pdf |
- Fig. 2.1.22. Schematic of polycapillary optics (p. 44) | html | pdf |
- Fig. 2.1.23. Incident and diffracted beam combi-optics for switching between (a) the Bragg–Brentano geometry and (b) the parallel-beam geometry (p. 45) | html | pdf |
- Fig. 2.1.24. Example of the use of highly sophisticated incident- and diffracted-beam combi-optics in combination with a rotatable X-ray source and a double detector arm (p. 45) | html | pdf |
- Tables
- Table 2.1.1. Types of beam-path components available in laboratory X-ray powder diffraction (p. 31) | html | pdf |
- Table 2.1.2. X-ray applications for with modern X-ray diffractometers (p. 32) | html | pdf |
- Table 2.1.3. Characteristic wavelengths and absorption edges of metal filters in common use (p. 37) | html | pdf |
- Table 2.1.4. Maximum target loading and specific loading for some selected fixed- and moving-target X-ray sources (p. 39) | html | pdf |
- Table 2.1.5. Comparison of divergence and intensity for several types of germanium channel-cut monochromators (p. 43) | html | pdf |
- Table 2.1.6. Important detector properties at 8 keV as reported by various vendors (p. 47) | html | pdf |