International Tables for Crystallography (2019). Vol. H. ch. 2.2, pp. 51-65
https://doi.org/10.1107/97809553602060000937

Chapter 2.2. Synchrotron radiation and powder diffraction

Contents

  • 2.2. Synchrotron radiation and powder diffraction  (pp. 51-65) | html | pdf | chapter contents |
    • 2.2.1. Introduction  (p. 51) | html | pdf |
    • 2.2.2. Production of synchrotron radiation  (pp. 51-54) | html | pdf |
      • 2.2.2.1. Bending magnets  (pp. 52-53) | html | pdf |
      • 2.2.2.2. Insertion devices  (pp. 53-54) | html | pdf |
        • 2.2.2.2.1. Wigglers  (p. 53) | html | pdf |
        • 2.2.2.2.2. Undulators  (pp. 53-54) | html | pdf |
        • 2.2.2.2.3. Tuning  (p. 54) | html | pdf |
    • 2.2.3. Optics  (pp. 54-56) | html | pdf |
      • 2.2.3.1. Monochromator  (pp. 54-55) | html | pdf |
      • 2.2.3.2. Mirror  (pp. 55-56) | html | pdf |
      • 2.2.3.3. Compound refractive lens  (p. 56) | html | pdf |
    • 2.2.4. Diffractometers  (pp. 56-60) | html | pdf |
      • 2.2.4.1. Parallel-beam instruments  (pp. 56-58) | html | pdf |
        • 2.2.4.1.1. Angular resolution  (pp. 57-58) | html | pdf |
        • 2.2.4.1.2. Hart–Parrish design  (p. 58) | html | pdf |
      • 2.2.4.2. Debye–Scherrer instruments  (pp. 58-59) | html | pdf |
      • 2.2.4.3. Energy-dispersive instruments  (pp. 59-60) | html | pdf |
    • 2.2.5. Considerations for powder-diffraction experiments  (pp. 60-63) | html | pdf |
      • 2.2.5.1. Polarization  (pp. 60-61) | html | pdf |
      • 2.2.5.2. Radiation damage  (p. 61) | html | pdf |
      • 2.2.5.3. Beam heating  (p. 61) | html | pdf |
      • 2.2.5.4. Choice of wavelength  (pp. 61-62) | html | pdf |
      • 2.2.5.5. Angular resolution  (p. 62) | html | pdf |
      • 2.2.5.6. Spatial resolution  (p. 62) | html | pdf |
      • 2.2.5.7. Time resolution  (p. 63) | html | pdf |
        • 2.2.5.7.1. Using fast detectors  (p. 63) | html | pdf |
        • 2.2.5.7.2. Using the pulse structure  (p. 63) | html | pdf |
      • 2.2.5.8. Beamline evolution  (p. 63) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 2.2.1. Schematic representation of a synchrotron storage ring with beamlines radiating tangentially from the bending magnets and in line with the straight sections  (p. 51) | html | pdf |
      • Fig. 2.2.2. Emission of a fan of radiation by the electron beam as it curves in a bending magnet from one straight section of the ring to the next  (p. 52) | html | pdf |
      • Fig. 2.2.3. Synchrotron radiation is emitted in a cone of opening angle of the order of 1/γ tangential to the electrons as they follow a curved trajectory through the bending magnet  (p. 52) | html | pdf |
      • Fig. 2.2.4. Spectrum of a bending magnet (B = 0.85 T) at the ESRF with an electron energy of 6 GeV (γ = 11 742), shown as flux per horizontal mrad for a 0.1% energy bandwidth at a storage-ring current of 200 mA  (p. 53) | html | pdf |
      • Fig. 2.2.5. Schematic illustration of a wiggler (upper) and an undulator (lower)  (p. 53) | html | pdf |
      • Fig. 2.2.6. Photon flux versus energy through a 1-mm2 aperture 30 m from the source, 0.1% bandwidth, for an ESRF u35 undulator (magnetic periodicity 35 mm, 1.6 m long, magnetic gap of 11 mm, peak magnetic field B0 = 0.71 T, electron energy 6 GeV, K = 2.31, storage-ring current 200 mA)  (p. 54) | html | pdf |
      • Fig. 2.2.7. Double-crystal monochromator arrangement  (p. 54) | html | pdf |
      • Fig. 2.2.8. Curved mirror set to collimate the beam  (p. 56) | html | pdf |
      • Fig. 2.2.9. Schematic diagram of a set of refractive lenses  (p. 56) | html | pdf |
      • Fig. 2.2.10. Multianalyser stage, nine channels separated by 2°, devised by Hodeau et al  (p. 57) | html | pdf |
      • Fig. 2.2.11. Δ(2θ) calculated from equation (2.2.2) for a beamline with a double-crystal Si(111) monochromator, an Si(111) analyser (Δm = Δa and θm = θa) and an FWHM vertical divergence of 25 µrad at λ = 0.4 Å (solid line: Δm ≃ 8.3 µrad, θm = 3.6571°), λ = 0.8 Å (dashed line: Δm ≃ 16.6 µrad, θm = 7.3292°) and λ = 1.2 Å (dotted line: Δm ≃ 25.2 µrad, θm = 11.0319°)  (p. 58) | html | pdf |
      • Fig. 2.2.12. Schematic representation of a parallel-beam diffractometer of the Hart–Parrish design  (p. 58) | html | pdf |
      • Fig. 2.2.13. (a) 120° Mythen detector box, containing helium, mounted on the powder diffractometer of the materials science beamline at the Swiss Light Source  (p. 59) | html | pdf |
      • Fig. 2.2.14. Schematic representation of an energy-dispersive diffraction arrangement  (p. 59) | html | pdf |
      • Fig. 2.2.15. Variation of Δf′ and Δf′′ with photon energy for Sn (solid line) and Sb (dotted line) in the vicinity of their K absorption edges (from the tables of Sasaki, 1989)  (p. 62) | html | pdf |