International Tables for Crystallography (2019). Vol. H. ch. 5.7, pp. 649-672
https://doi.org/10.1107/97809553602060000972 |
Chapter 5.7. Nanometre-scale structure from powder diffraction: total scattering and atomic pair distribution function analysis
Contents
- 5.7. Nanometre-scale structure from powder diffraction: total scattering and atomic pair distribution function analysis (pp. 649-672) | html | pdf | chapter contents |
- 5.7.1. Introduction (p. 649) | html | pdf |
- 5.7.2. Scattering from nanostructures (pp. 649-659) | html | pdf |
- 5.7.2.1. The Debye equation (pp. 650-652) | html | pdf |
- 5.7.2.2. Correlation functions (pp. 652-654) | html | pdf |
- 5.7.2.3. Low-angle scattering intensity (pp. 654-655) | html | pdf |
- 5.7.2.4. Calculating ) from models (pp. 655-657) | html | pdf |
- 5.7.2.4.1. Calculating in real space for bulk crystals (p. 655) | html | pdf |
- 5.7.2.4.2. Calculating in real space for nanoparticles modelled as attenuated bulk crystals (pp. 655-656) | html | pdf |
- 5.7.2.4.3. Calculating as the Fourier transform of the properly normalized Debye function (p. 656) | html | pdf |
- 5.7.2.4.4. Calculating in real space from discrete nanoparticle models (pp. 656-657) | html | pdf |
- 5.7.2.5. The extent of small-angle scattering (p. 657) | html | pdf |
- 5.7.2.6. PDFs from structures with multiple elements (pp. 657-658) | html | pdf |
- 5.7.2.7. Differential structure functions (pp. 658-659) | html | pdf |
- 5.7.3. Collecting data for total-scattering and PDF measurements (pp. 659-663) | html | pdf |
- 5.7.4. Data reduction (pp. 663-664) | html | pdf |
- 5.7.5. Extracting structural information (pp. 664-669) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 5.7.1. TEM images illustrating the variety in nanostructured materials: (a) Nanostructuring in a bulk material, (b) intercalation in a mesoporous host and (c) nanoparticles (p. 649) | html | pdf |
- Fig. 5.7.2. Scattering intensity calculated using the Debye function [equation (5.7.13)] for a number of discrete particles: (a) benzene, (b) fullerene C60 and (c) a BaTiO3 nanoparticle (p. 651) | html | pdf |
- Fig. 5.7.3. Schematic showing how the PDF is calculated (p. 652) | html | pdf |
- Fig. 5.7.4. Atomic form factors and the Morningstar–Warren approximation for CdSe (p. 653) | html | pdf |
- Fig. 5.7.5. An illustration of the annulus used to calculate the coordination number (p. 653) | html | pdf |
- Fig. 5.7.6. The nanoparticle form factors for a range of particle shapes (p. 654) | html | pdf |
- Fig. 5.7.7. (a) The calculated diffraction pattern from a faceted 2 nm gold nanoparticle (p. 656) | html | pdf |
- Fig. 5.7.8. Schematic of the 2D detector and sample placement for a typical RAPDF measurement (p. 660) | html | pdf |
- Fig. 5.7.9. An example of the better powder average (reduced spottiness of the diffraction pattern) obtained when a sample with a poor powder average is spun (p. 661) | html | pdf |
- Fig. 5.7.10. (a) TEM image of 100 nm Au nanoparticles (black dots) used for ePDF measurement (p. 662) | html | pdf |
- Fig. 5.7.11. A schematic of the buildup of the PDF from the structural model for face-centred-cubic nickel (p. 664) | html | pdf |
- Fig. 5.7.12. PDF fit of crystalline nickel (p. 665) | html | pdf |
- Fig. 5.7.13. A schematic of three different motional correlations of atoms and their corresponding PDFs (p. 666) | html | pdf |
- Fig. 5.7.14. An example of an RMC refinement to the neutron total-scattering data of ZrW2O8 (p. 667) | html | pdf |
- Fig. 5.7.15. Total-scattering structure functions, with low-angle scattering (inset) from surfactant micelles of CTAB with different substitutions of hydrogen/deuterium (p. 668) | html | pdf |
- Fig. 5.7.16. Structure solution of C60 from neutron PDF data using the LIGA algorithm (Juhás et al (p. 669) | html | pdf |
- Tables