Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x, -y, z | (3) -x, y, -z | (4) x, -y, -z | (5) -x, -y, -z | (6) x, y, -z | (7) x, -y, z | (8) -x, y, z |
|
I Maximal translationengleiche subgroups
[2] Pmm2 (25) | 1; 2; 7; 8 |
|
|
[2] Pm2m (25, Pmm2) | 1; 3; 6; 8 | c, a, b
|
|
[2] P2mm (25, Pmm2) | 1; 4; 6; 7 | b, c, a
|
|
[2] P222 (16) | 1; 2; 3; 4 |
|
|
[2] P112/m (10) | 1; 2; 5; 6 |
|
|
[2] P12/m1 (10) | 1; 3; 5; 7 |
|
|
[2] P2/m11 (10, P12/m1) | 1; 4; 5; 8 | c, a, b
|
|
II Maximal klassengleiche subgroups
[2] a' = 2a
Pmma (51) | <3; 5; 2 + (1, 0, 0)> | 2a, b, c | |
Pmma (51) | <2; (3; 5) + (1, 0, 0)> | 2a, b, c | 1/2, 0, 0 |
Pmam (51, Pmma) | <2; 5; 3 + (1, 0, 0)> | 2a, -c, b | |
Pmam (51, Pmma) | <3; (2; 5) + (1, 0, 0)> | 2a, -c, b | 1/2, 0, 0 |
Pmaa (49, Pccm) | <5; (2; 3) + (1, 0, 0)> | b, c, 2a | |
Pmaa (49, Pccm) | <2; 3; 5 + (1, 0, 0)> | b, c, 2a | 1/2, 0, 0 |
Pmmm (47) | <2; 3; 5> | 2a, b, c | |
Pmmm (47) | <(2; 3; 5) + (1, 0, 0)> | 2a, b, c | 1/2, 0, 0 |
[2] b' = 2b
Pbmm (51, Pmma) | <2; 5; 3 + (0, 1, 0)> | 2b, c, a | |
Pbmm (51, Pmma) | <(2; 3; 5) + (0, 1, 0)> | 2b, c, a | 0, 1/2, 0 |
Pmmb (51, Pmma) | <5; (2; 3) + (0, 1, 0)> | -2b, a, c | |
Pmmb (51, Pmma) | <2; (3; 5) + (0, 1, 0)> | -2b, a, c | 0, 1/2, 0 |
Pbmb (49, Pccm) | <3; 5; 2 + (0, 1, 0)> | c, a, 2b | |
Pbmb (49, Pccm) | <2; 3; 5 + (0, 1, 0)> | c, a, 2b | 0, 1/2, 0 |
Pmmm (47) | <2; 3; 5> | a, 2b, c | |
Pmmm (47) | <3; (2; 5) + (0, 1, 0)> | a, 2b, c | 0, 1/2, 0 |
[2] c' = 2c
Pcmm (51, Pmma) | <3; 5; 2 + (0, 0, 1)> | 2c, b, -a | |
Pcmm (51, Pmma) | <(2; 3; 5) + (0, 0, 1)> | 2c, b, -a | 0, 0, 1/2 |
Pmcm (51, Pmma) | <5; (2; 3) + (0, 0, 1)> | 2c, a, b | |
Pmcm (51, Pmma) | <3; (2; 5) + (0, 0, 1)> | 2c, a, b | 0, 0, 1/2 |
Pccm (49) | <2; 5; 3 + (0, 0, 1)> | a, b, 2c | |
Pccm (49) | <2; 3; 5 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
Pmmm (47) | <2; 3; 5> | a, b, 2c | |
Pmmm (47) | <2; (3; 5) + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
[2] b' = 2b, c' = 2c
Aemm (67, Cmme) | <3; 5; 2 + (0, 0, 1)> | 2b, 2c, a | |
Aemm (67, Cmme) | <(2; 3; 5) + (0, 0, 1)> | 2b, 2c, a | 0, 0, 1/2 |
Aemm (67, Cmme) | <2; 5; 3 + (0, 0, 1)> | 2b, 2c, a | 0, 1/2, 1/2 |
Aemm (67, Cmme) | <2; 3; 5 + (0, 0, 1)> | 2b, 2c, a | 0, 1/2, 0 |
Ammm (65, Cmmm) | <2; 3; 5> | 2b, 2c, a | |
Ammm (65, Cmmm) | <2; (3; 5) + (0, 0, 1)> | 2b, 2c, a | 0, 0, 1/2 |
Ammm (65, Cmmm) | <5; (2; 3) + (0, 0, 1)> | 2b, 2c, a | 0, 1/2, 1/2 |
Ammm (65, Cmmm) | <3; (2; 5) + (0, 0, 1)> | 2b, 2c, a | 0, 1/2, 0 |
[2] a' = 2a, c' = 2c
Bmem (67, Cmme) | <2; 5; 3 + (1, 0, 0)> | 2c, 2a, b | |
Bmem (67, Cmme) | <3; (2; 5) + (1, 0, 0)> | 2c, 2a, b | 1/2, 0, 0 |
Bmem (67, Cmme) | <5; (2; 3) + (1, 0, 0)> | 2c, 2a, b | 1/2, 0, 1/2 |
Bmem (67, Cmme) | <2; 3; 5 + (1, 0, 0)> | 2c, 2a, b | 0, 0, 1/2 |
Bmmm (65, Cmmm) | <2; 3; 5> | 2c, 2a, b | |
Bmmm (65, Cmmm) | <(2; 3; 5) + (1, 0, 0)> | 2c, 2a, b | 1/2, 0, 0 |
Bmmm (65, Cmmm) | <3; 5; 2 + (1, 0, 0)> | 2c, 2a, b | 1/2, 0, 1/2 |
Bmmm (65, Cmmm) | <2; (3; 5) + (1, 0, 0)> | 2c, 2a, b | 0, 0, 1/2 |
[2] a' = 2a, b' = 2b
Cmme (67) | <3; 5; 2 + (1, 0, 0)> | 2a, 2b, c | 1/2, 1/2, 0 |
Cmme (67) | <2; (3; 5) + (1, 0, 0)> | 2a, 2b, c | 0, 1/2, 0 |
Cmme (67) | <5; (2; 3) + (1, 0, 0)> | 2a, 2b, c | |
Cmme (67) | <2; 3; 5 + (1, 0, 0)> | 2a, 2b, c | 1/2, 0, 0 |
Cmmm (65) | <2; 3; 5> | 2a, 2b, c | |
Cmmm (65) | <(2; 3; 5) + (1, 0, 0)> | 2a, 2b, c | 1/2, 0, 0 |
Cmmm (65) | <2; 5; 3 + (1, 0, 0)> | 2a, 2b, c | 1/2, 1/2, 0 |
Cmmm (65) | <3; (2; 5) + (1, 0, 0)> | 2a, 2b, c | 0, 1/2, 0 |
[2] a' = 2a, b' = 2b, c' = 2c
Fmmm (69) | <2; 3; 5> | 2a, 2b, 2c | |
Fmmm (69) | <(2; 3; 5) + (1, 0, 0)> | 2a, 2b, 2c | 1/2, 0, 0 |
Fmmm (69) | <3; 5; 2 + (1, 0, 0)> | 2a, 2b, 2c | 1/2, 0, 1/2 |
Fmmm (69) | <2; (3; 5) + (1, 0, 0)> | 2a, 2b, 2c | 0, 0, 1/2 |
Fmmm (69) | <2; 5; 3 + (1, 0, 0)> | 2a, 2b, 2c | 1/2, 1/2, 0 |
Fmmm (69) | <3; (2; 5) + (1, 0, 0)> | 2a, 2b, 2c | 0, 1/2, 0 |
Fmmm (69) | <5; (2; 3) + (1, 0, 0)> | 2a, 2b, 2c | 0, 1/2, 1/2 |
Fmmm (69) | <2; 3; 5 + (1, 0, 0)> | 2a, 2b, 2c | 1/2, 1/2, 1/2 |
[3] a' = 3a
| Pmmm (47) | <2; 3; 5> | 3a, b, c | | Pmmm (47) | <(2; 3; 5) + (2, 0, 0)> | 3a, b, c | 1, 0, 0 | Pmmm (47) | <(2; 3; 5) + (4, 0, 0)> | 3a, b, c | 2, 0, 0 |
|
[3] b' = 3b
| Pmmm (47) | <2; 3; 5> | a, 3b, c | | Pmmm (47) | <3; (2; 5) + (0, 2, 0)> | a, 3b, c | 0, 1, 0 | Pmmm (47) | <3; (2; 5) + (0, 4, 0)> | a, 3b, c | 0, 2, 0 |
|
[3] c' = 3c
| Pmmm (47) | <2; 3; 5> | a, b, 3c | | Pmmm (47) | <2; (3; 5) + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | Pmmm (47) | <2; (3; 5) + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
- Series of maximal isomorphic subgroups
[p] a' = pa
Pmmm (47) | <(2; 3; 5) + (2u, 0, 0)> | pa, b, c | u, 0, 0 | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p] b' = pb
Pmmm (47) | <3; (2; 5) + (0, 2u, 0)> | a, pb, c | 0, u, 0 | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p] c' = pc
Pmmm (47) | <2; (3; 5) + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
[2] P4/mmm (123); [2] P42/mmc (131); [3] Pm-3 (200) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] Ammm (65, Cmmm); [2] Bmmm (65, Cmmm); [2] Cmmm (65); [2] Immm (71) |