Origin on glide plane c
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) c x, 0, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) n(1/2, 0, 1/2) x, 1/4, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (1/2, 1/2, 0)+ | General: | ||||||
|
| hkl : h + k = 2n h0l : h, l = 2n 0kl : k = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n |
Symmetry of special projections
Along [001] c11m a' = ap b' = b Origin at 0, 0, z | Along [100] p1g1 a' = 1/2b b' = cp Origin at x, 0, 0 | Along [010] p1 a' = 1/2c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | [2] C1 (P1, 1) | 1+ |
IIa | [2] P1c1 (Pc, 7) | 1; 2 | |
[2] P1n1 (Pc, 7) | 1; 2 + (1/2, 1/2, 0) |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [3] C1c1 (b' = 3b) (Cc, 9); [3] C1c1 (c' = 3c) (Cc, 9); [3] C1c1 (a' = 3a or a' = 3a, c' = -a + c or a' = 3a, c' = a + c) (Cc, 9) |
Minimal non-isomorphic supergroups
I | [2] C2/c (15); [2] Cmc21 (36); [2] Ccc2 (37); [2] Ama2 (40); [2] Aea2 (41); [2] Fdd2 (43); [2] Iba2 (45); [2] Ima2 (46); [3] P3c1 (158); [3] P31c (159); [3] R3c (161) |
II | [2] F1m1 (Cm, 8); [2] C1m1 (c' = 1/2c) (Cm, 8); [2] P1c1 (a' = 1/2a, b' = 1/2b) (Pc, 7) |
UNIQUE AXIS b, DIFFERENT CELL CHOICES
C1c1
UNIQUE AXIS b, CELL CHOICE 1
Origin on glide plane c
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (1/2, 1/2, 0)+ | General: | ||||||
|
| hkl : h + k = 2n h0l : h, l = 2n 0kl : k = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n |
A1n1
UNIQUE AXIS b, CELL CHOICE 2
Origin on glide plane n
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (0, 1/2, 1/2)+ | General: | ||||||
|
| hkl : k + l = 2n h0l : h, l = 2n 0kl : k + l = 2n hk0 : k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n |
I1a1
UNIQUE AXIS b, CELL CHOICE 3
Origin on glide plane a
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (1/2, 1/2, 1/2)+ | General: | ||||||
|
| hkl : h + k + l = 2n h0l : h, l = 2n 0kl : k + l = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n |
Origin on glide plane a
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) a x, y, 0 |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) n(1/2, 1/2, 0) x, y, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (0, 1/2, 1/2)+ | General: | ||||||
|
| hkl : k + l = 2n hk0 : h, k = 2n 0kl : k + l = 2n h0l : l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n |
Symmetry of special projections
Along [001] p1 a' = 1/2a b' = 1/2b Origin at 0, 0, z | Along [100] c11m a' = bp b' = c Origin at x, 0, 0 | Along [010] p1g1 a' = 1/2c b' = ap Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | [2] A1 (P1, 1) | 1+ |
IIa | [2] P11a (Pc, 7) | 1; 2 | |
[2] P11n (Pc, 7) | 1; 2 + (0, 1/2, 1/2) |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [3] A11a (c' = 3c) (Cc, 9); [3] A11a (a' = 3a) (Cc, 9); [3] A11a (b' = 3b or a' = a - b, b' = 3b or a' = a + b, b' = 3b) (Cc, 9) |
Minimal non-isomorphic supergroups
I | [2] C2/c (15); [2] Cmc21 (36); [2] Ccc2 (37); [2] Ama2 (40); [2] Aea2 (41); [2] Fdd2 (43); [2] Iba2 (45); [2] Ima2 (46); [3] P3c1 (158); [3] P31c (159); [3] R3c (161) |
II | [2] F11m (Cm, 8); [2] A11m (a' = 1/2a) (Cm, 8); [2] P11a (b' = 1/2b, c' = 1/2c) (Pc, 7) |
UNIQUE AXIS c, DIFFERENT CELL CHOICES
A11a
UNIQUE AXIS c, CELL CHOICE 1
Origin on glide plane a
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (0, 1/2, 1/2)+ | General: | ||||||
|
| hkl : k + l = 2n hk0 : h, k = 2n 0kl : k + l = 2n h0l : l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n |
B11n
UNIQUE AXIS c, CELL CHOICE 2
Origin on glide plane n
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 0, 1/2); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (1/2, 0, 1/2)+ | General: | ||||||
|
| hkl : h + l = 2n hk0 : h, k = 2n 0kl : l = 2n h0l : h + l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n |
I11b
UNIQUE AXIS c, CELL CHOICE 3
Origin on glide plane b
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||
(0, 0, 0)+ (1/2, 1/2, 1/2)+ | General: | ||||||
|
| hkl : h + k + l = 2n hk0 : h, k = 2n 0kl : k + l = 2n h0l : h + l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n |