Origin at centre (2/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, y, 0 | (3) -1 0, 0, 0 | (4) m x, 0, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2(0, 1/2, 0) 1/4, y, 0 | (3) -1 1/4, 1/4, 0 | (4) a x, 1/4, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x, y, -z | (3) -x, -y, -z | (4) x, -y, z |
| hkl : h + k = 2n h0l : h = 2n 0kl : k = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| 1/4, 1/4, 1/2 | 3/4, 1/4, 1/2 |
| hkl : h = 2n
|
| | hkl : h = 2n
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] c2mm a' = ap b' = b Origin at 0, 0, z | Along [100] p2mm a' = 1/2b b' = cp Origin at x, 0, 0 | Along [010] p2 a' = c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] C1m1 (Cm, 8) | (1; 4)+ |
| | [2] C121 (C2, 5) | (1; 2)+ |
| | [2] C-1 (P-1, 2) | (1; 3)+ |
IIa | | [2] P121/a1 (P21/c, 14) | 1; 3; (2; 4) + (1/2, 1/2, 0) |
| | [2] P12/a1 (P2/c, 13) | 1; 2; (3; 4) + (1/2, 1/2, 0) |
| | [2] P121/m1 (P21/m, 11) | 1; 4; (2; 3) + (1/2, 1/2, 0) |
| | [2] P12/m1 (P2/m, 10) | 1; 2; 3; 4 |
IIb | [2] C12/c1 (c' = 2c) (C2/c, 15); [2] I12/c1 (c' = 2c) (C2/c, 15) |
Maximal isomorphic subgroups of lowest index
IIc | [2] C12/m1 (c' = 2c or a' = a + 2c, c' = 2c) (C2/m, 12); [3] C12/m1 (b' = 3b) (C2/m, 12) |
Minimal non-isomorphic supergroups
I | [2] Cmcm (63); [2] Cmce (64); [2] Cmmm (65); [2] Cmme (67); [2] Fmmm (69); [2] Immm (71); [2] Ibam (72); [2] Imma (74); [2] I4/m (87); [3] P-31m (162); [3] P-3m1 (164); [3] R-3m (166) |
II | [2] P12/m1 (a' = 1/2a, b' = 1/2b) (P2/m, 10) |
UNIQUE AXIS b, DIFFERENT CELL CHOICES
C12/m1
UNIQUE AXIS b, CELL CHOICE 1
Origin at centre (2/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x, y, -z | (3) -x, -y, -z | (4) x, -y, z |
| hkl : h + k = 2n h0l : h = 2n 0kl : k = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| |
| 1/4, 1/4, 1/2 | 3/4, 1/4, 1/2 |
| hkl : h = 2n |
| |
| | no extra conditions |
| |
| | no extra conditions |
| |
A12/m1
UNIQUE AXIS b, CELL CHOICE 2
Origin at centre (2/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (0, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x, y, -z | (3) -x, -y, -z | (4) x, -y, z |
| hkl : k + l = 2n h0l : l = 2n 0kl : k + l = 2n hk0 : k = 2n 0k0 : k = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| |
| 1/2, 1/4, 3/4 | 1/2, 1/4, 1/4 |
| hkl : k = 2n |
| |
| | no extra conditions |
| |
| | no extra conditions |
| |
I12/m1
UNIQUE AXIS b, CELL CHOICE 3
Origin at centre (2/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x, y, -z | (3) -x, -y, -z | (4) x, -y, z |
| hkl : h + k + l = 2n h0l : h + l = 2n 0kl : k + l = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| |
| 1/4, 1/4, 3/4 | 3/4, 1/4, 1/4 |
| hkl : k = 2n |
| 3/4, 1/4, 3/4 | 1/4, 1/4, 1/4 |
|
| | no extra conditions |
| |
| | no extra conditions |
| |