Origin at -1 on glide plane c
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, y, 1/4 | (3) -1 0, 0, 0 | (4) c x, 0, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2(0, 1/2, 0) 1/4, y, 1/4 | (3) -1 1/4, 1/4, 0 | (4) n(1/2, 0, 1/2) x, 1/4, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x, y, -z + 1/2 | (3) -x, -y, -z | (4) x, -y, z + 1/2 |
| hkl : h + k = 2n h0l : h, l = 2n 0kl : k = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 1/4, 1/4, 1/2 | 3/4, 1/4, 0 |
| hkl : k + l = 2n
|
| 1/4, 1/4, 0 | 3/4, 1/4, 1/2 |
| hkl : k + l = 2n
|
| | hkl : l = 2n
|
| | hkl : l = 2n
|
Symmetry of special projections
Along [001] c2mm a' = ap b' = b Origin at 0, 0, z | Along [100] p2gm a' = 1/2b b' = cp Origin at x, 0, 0 | Along [010] p2 a' = 1/2c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] C1c1 (Cc, 9) | (1; 4)+ |
| | [2] C121 (C2, 5) | (1; 2)+ |
| | [2] C-1 (P-1, 2) | (1; 3)+ |
IIa | | [2] P121/n1 (P21/c, 14) | 1; 3; (2; 4) + (1/2, 1/2, 0) |
| | [2] P121/c1 (P21/c, 14) | 1; 4; (2; 3) + (1/2, 1/2, 0) |
| | [2] P12/c1 (P2/c, 13) | 1; 2; 3; 4 |
| | [2] P12/n1 (P2/c, 13) | 1; 2; (3; 4) + (1/2, 1/2, 0) |
Maximal isomorphic subgroups of lowest index
IIc | [3] C12/c1 (b' = 3b) (C2/c, 15); [3] C12/c1 (c' = 3c) (C2/c, 15); [3] C12/c1 (a' = 3a or a' = 3a, c' = -a + c or a' = 3a, c' = a + c) (C2/c, 15) |
Minimal non-isomorphic supergroups
I | [2] Cmcm (63); [2] Cmce (64); [2] Cccm (66); [2] Ccce (68); [2] Fddd (70); [2] Ibam (72); [2] Ibca (73); [2] Imma (74); [2] I41/a (88); [3] P-31c (163); [3] P-3c1 (165); [3] R-3c (167) |
II | [2] F12/m1 (C2/m, 12); [2] C12/m1 (c' = 1/2c) (C2/m, 12); [2] P12/c1 (a' = 1/2a, b' = 1/2b) (P2/c, 13) |
UNIQUE AXIS b, DIFFERENT CELL CHOICES
C12/c1
UNIQUE AXIS b, CELL CHOICE 1
Origin at -1 on glide plane c
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x, y, -z + 1/2 | (3) -x, -y, -z | (4) x, -y, z + 1/2 |
| hkl : h + k = 2n h0l : h, l = 2n 0kl : k = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 1/4, 1/4, 1/2 | 3/4, 1/4, 0 |
| hkl : k + l = 2n |
| 1/4, 1/4, 0 | 3/4, 1/4, 1/2 |
|
| | hkl : l = 2n |
| |
A12/n1
UNIQUE AXIS b, CELL CHOICE 2
Origin at -1 on glide plane n
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (0, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x + 1/2, y, -z + 1/2 | (3) -x, -y, -z | (4) x + 1/2, -y, z + 1/2 |
| hkl : k + l = 2n h0l : h, l = 2n 0kl : k + l = 2n hk0 : k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 1/2, 1/4, 3/4 | 0, 1/4, 3/4 |
| hkl : h = 2n |
| 0, 1/4, 1/4 | 1/2, 1/4, 1/4 |
|
| | hkl : h + k = 2n |
| |
I12/a1
UNIQUE AXIS b, CELL CHOICE 3
Origin at -1 on glide plane a
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x + 1/2, y, -z | (3) -x, -y, -z | (4) x + 1/2, -y, z |
| hkl : h + k + l = 2n h0l : h, l = 2n 0kl : k + l = 2n hk0 : h + k = 2n 0k0 : k = 2n h00 : h = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 1/4, 1/4, 3/4 | 1/4, 1/4, 1/4 |
| hkl : l = 2n |
| 3/4, 1/4, 3/4 | 3/4, 1/4, 1/4 |
|
| | hkl : h = 2n |
| |
Origin at -1 on glide plane a
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 1/4, 0, z | (3) -1 0, 0, 0 | (4) a x, y, 0 |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) 2(0, 0, 1/2) 1/4, 1/4, z | (3) -1 0, 1/4, 1/4 | (4) n(1/2, 1/2, 0) x, y, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (0, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x + 1/2, -y, z | (3) -x, -y, -z | (4) x + 1/2, y, -z |
| hkl : k + l = 2n hk0 : h, k = 2n 0kl : k + l = 2n h0l : l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 1/2, 1/4, 1/4 | 0, 3/4, 1/4 |
| hkl : h + k = 2n
|
| 0, 1/4, 1/4 | 1/2, 3/4, 1/4 |
| hkl : h + k = 2n
|
| | hkl : h = 2n
|
| | hkl : h = 2n
|
Symmetry of special projections
Along [001] p2 a' = 1/2a b' = 1/2b Origin at 0, 0, z | Along [100] c2mm a' = bp b' = c Origin at x, 0, 0 | Along [010] p2gm a' = 1/2c b' = ap Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] A11a (Cc, 9) | (1; 4)+ |
| | [2] A112 (C2, 5) | (1; 2)+ |
| | [2] A-1 (P-1, 2) | (1; 3)+ |
IIa | | [2] P1121/n (P21/c, 14) | 1; 3; (2; 4) + (0, 1/2, 1/2) |
| | [2] P1121/a (P21/c, 14) | 1; 4; (2; 3) + (0, 1/2, 1/2) |
| | [2] P112/a (P2/c, 13) | 1; 2; 3; 4 |
| | [2] P112/n (P2/c, 13) | 1; 2; (3; 4) + (0, 1/2, 1/2) |
Maximal isomorphic subgroups of lowest index
IIc | [3] A112/a (c' = 3c) (C2/c, 15); [3] A112/a (a' = 3a) (C2/c, 15); [3] A112/a (b' = 3b or a' = a - b, b' = 3b or a' = a + b, b' = 3b) (C2/c, 15) |
Minimal non-isomorphic supergroups
I | [2] Cmcm (63); [2] Cmce (64); [2] Cccm (66); [2] Ccce (68); [2] Fddd (70); [2] Ibam (72); [2] Ibca (73); [2] Imma (74); [2] I41/a (88); [3] P-31c (163); [3] P-3c1 (165); [3] R-3c (167) |
II | [2] F112/m (C2/m, 12); [2] A112/m (a' = 1/2a) (C2/m, 12); [2] P112/a (b' = 1/2b, c' = 1/2c) (P2/c, 13) |
UNIQUE AXIS c, DIFFERENT CELL CHOICES
A112/a
UNIQUE AXIS c, CELL CHOICE 1
Origin at -1 on glide plane a
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (0, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x + 1/2, -y, z | (3) -x, -y, -z | (4) x + 1/2, y, -z |
| hkl : k + l = 2n hk0 : h, k = 2n 0kl : k + l = 2n h0l : l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 1/2, 1/4, 1/4 | 0, 3/4, 1/4 |
| hkl : h + k = 2n |
| 0, 1/4, 1/4 | 1/2, 3/4, 1/4 |
|
| | hkl : h = 2n |
| |
B112/n
UNIQUE AXIS c, CELL CHOICE 2
Origin at -1 on glide plane n
Asymmetric unit | 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 0, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 0, 1/2)+ | General:
|
| (1) x, y, z | (2) -x + 1/2, -y + 1/2, z | (3) -x, -y, -z | (4) x + 1/2, y + 1/2, -z |
| hkl : h + l = 2n hk0 : h, k = 2n 0kl : l = 2n h0l : h + l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 3/4, 1/2, 1/4 | 3/4, 0, 1/4 |
| hkl : k = 2n |
| 1/4, 0, 1/4 | 1/4, 1/2, 1/4 |
|
| | hkl : h + k = 2n |
| |
I112/b
UNIQUE AXIS c, CELL CHOICE 3
Origin at -1 on glide plane b
Asymmetric unit | 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x, -y + 1/2, z | (3) -x, -y, -z | (4) x, y + 1/2, -z |
| hkl : h + k + l = 2n hk0 : h, k = 2n 0kl : k + l = 2n h0l : h + l = 2n 00l : l = 2n h00 : h = 2n 0k0 : k = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| 3/4, 1/4, 1/4 | 1/4, 1/4, 1/4 |
| hkl : h = 2n |
| 3/4, 3/4, 1/4 | 1/4, 3/4, 1/4 |
|
| | hkl : k = 2n |
| |