Origin at 2 2 2
Asymmetric unit | 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, 0, z | (3) 2 0, y, 0 | (4) 2 x, 0, 0 |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2 1/4, 1/4, z | (3) 2(0, 1/2, 0) 1/4, y, 0 | (4) 2(1/2, 0, 0) x, 1/4, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 0)+ | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -x, y, -z | (4) x, -y, -z |
| hkl : h + k = 2n 0kl : k = 2n h0l : h = 2n hk0 : h + k = 2n h00 : h = 2n 0k0 : k = 2n
|
| | Special: as above, plus
|
| | hk0 : h = 2n
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] c2mm a' = a b' = b Origin at 0, 0, z | Along [100] p2mm a' = 1/2b b' = c Origin at x, 0, 0 | Along [010] p2mm a' = c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] C121 (C2, 5) | (1; 3)+ |
| | [2] C211 (C2, 5) | (1; 4)+ |
| | [2] C112 (P2, 3) | (1; 2)+ |
IIa | | [2] P21212 (18) | 1; 2; (3; 4) + (1/2, 1/2, 0) |
| | [2] P2122 (P2221, 17) | 1; 3; (2; 4) + (1/2, 1/2, 0) |
| | [2] P2212 (P2221, 17) | 1; 4; (2; 3) + (1/2, 1/2, 0) |
| | [2] P222 (16) | 1; 2; 3; 4 |
IIb | [2] I212121 (c' = 2c) (24); [2] I222 (c' = 2c) (23); [2] C2221 (c' = 2c) (20) |
Maximal isomorphic subgroups of lowest index
IIc | [2] C222 (c' = 2c) (21); [3] C222 (a' = 3a or b' = 3b) (21) |
Minimal non-isomorphic supergroups
I | [2] Cmmm (65); [2] Cccm (66); [2] Cmme (67); [2] Ccce (68); [2] P422 (89); [2] P4212 (90); [2] P4222 (93); [2] P42212 (94); [2] P-4m2 (115); [2] P-4c2 (116); [2] P-4b2 (117); [2] P-4n2 (118); [3] P622 (177); [3] P6222 (180); [3] P6422 (181) |
II | [2] F222 (22); [2] P222 (a' = 1/2a, b' = 1/2b) (16) |