Origin at 3 1 2
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/2; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) |
Vertices | 0, 0, 0 | 1/2, 0, 0 | 2/3, 1/3, 0 | 1/3, 2/3, 0 | 0, 1/2, 0 | 0, 0, 1/2 | 1/2, 0, 1/2 | 2/3, 1/3, 1/2 | 1/3, 2/3, 1/2 | 0, 1/2, 1/2 |
|
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2 x, -x, 0 | (5) 2 x, 2x, 0 | (6) 2 2x, x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -y, -x, -z | (5) -x + y, y, -z | (6) x, x - y, -z |
| no conditions |
| | Special: as above, plus
|
| x, -x, 1/2 | x, 2x, 1/2 | (-2x), -x, 1/2 |
| no extra conditions |
| x, -x, 0 | x, 2x, 0 | (-2x), -x, 0 |
| no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p3m1 a' = a b' = b Origin at 0, 0, z | Along [100] p11m a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p2 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P311 (P3, 143) | 1; 2; 3 |
| | [3] P112 (C2, 5) | 1; 4 | | [3] P112 (C2, 5) | 1; 5 | | [3] P112 (C2, 5) | 1; 6 |
|
IIb | [3] P3212 (c' = 3c) (153); [3] P3112 (c' = 3c) (151); [3] H312 (a' = 3a, b' = 3b) (P321, 150); [3] R32 (a' = a - b, b' = a + 2b, c' = 3c) (155); [3] R32 (a' = 2a + b, b' = -a + b, c' = 3c) (155) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P312 (c' = 2c) (149); [4] P312 (a' = 2a, b' = 2b) (149) |
Minimal non-isomorphic supergroups
I | [2] P-31m (162); [2] P-31c (163); [2] P622 (177); [2] P6322 (182); [2] P-6m2 (187); [2] P-6c2 (188) |