
Origin at centre (-3) at -3 c
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/12; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) |
Vertices | 0, 0, 0 | 1/2, 0, 0 | 2/3, 1/3, 0 | 1/3, 2/3, 0 | 0, 1/2, 0 | 0, 0, 1/12 | 1/2, 0, 1/12 | 2/3, 1/3, 1/12 | 1/3, 2/3, 1/12 | 0, 1/2, 1/12 |
|
For (0, 0, 0)+ set
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2 x, x, 1/4 | (5) 2 x, 0, 1/4 | (6) 2 0, y, 1/4 |
(7) -1 0, 0, 0 | (8) -3+ 0, 0, z; 0, 0, 0 | (9) -3- 0, 0, z; 0, 0, 0 |
(10) c x, -x, z | (11) c x, 2x, z | (12) c 2x, x, z |
For (2/3, 1/3, 1/3)+ set
(1) t(2/3, 1/3, 1/3) | (2) 3+(0, 0, 1/3) 1/3, 1/3, z | (3) 3-(0, 0, 1/3) 1/3, 0, z |
(4) 2(1/2, 1/2, 0) x, x - 1/6, 5/12 | (5) 2(1/2, 0, 0) x, 1/6, 5/12 | (6) 2 1/3, y, 5/12 |
(7) -1 1/3, 1/6, 1/6 | (8) -3+ 1/3, -1/3, z; 1/3, -1/3, 1/6 | (9) -3- 1/3, 2/3, z; 1/3, 2/3, 1/6 |
(10) g(1/6, -1/6, 5/6) x + 1/2, -x, z | (11) g(1/6, 1/3, 5/6) x + 1/4, 2x, z | (12) g(2/3, 1/3, 5/6) 2x, x, z |
For (1/3, 2/3, 2/3)+ set
(1) t(1/3, 2/3, 2/3) | (2) 3+(0, 0, 2/3) 0, 1/3, z | (3) 3-(0, 0, 2/3) 1/3, 1/3, z |
(4) 2(1/2, 1/2, 0) x, x + 1/6, 1/12 | (5) 2 x, 1/3, 1/12 | (6) 2(0, 1/2, 0) 1/6, y, 1/12 |
(7) -1 1/6, 1/3, 1/3 | (8) -3+ 2/3, 1/3, z; 2/3, 1/3, 1/3 | (9) -3- -1/3, 1/3, z; -1/3, 1/3, 1/3 |
(10) g(-1/6, 1/6, 1/6) x + 1/2, -x, z | (11) g(1/3, 2/3, 1/6) x, 2x, z | (12) g(1/3, 1/6, 1/6) 2x - 1/2, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(2/3, 1/3, 1/3); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (2/3, 1/3, 1/3)+ (1/3, 2/3, 2/3)+ | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) y, x, -z + 1/2 | (5) x - y, -y, -z + 1/2 | (6) -x, -x + y, -z + 1/2 | (7) -x, -y, -z | (8) y, -x + y, -z | (9) x - y, x, -z | (10) -y, -x, z + 1/2 | (11) -x + y, y, z + 1/2 | (12) x, x - y, z + 1/2 |
| hkil : -h + k + l = 3n hki0 : -h + k = 3n hh(-2h)l : l = 3n h-h0l : h + l = 3n, l = 2n 000l : l = 6n h-h00 : h = 3n
|
| | Special: as above, plus
|
| x, 0, 1/4 | 0, x, 1/4 | -x, -x, 1/4 | -x, 0, 3/4 | 0, -x, 3/4 | x, x, 3/4 |
| no extra conditions |
| 1/2, 0, 0 | 0, 1/2, 0 | 1/2, 1/2, 0 |
0, 1/2, 1/2 | 1/2, 0, 1/2 | 1/2, 1/2, 1/2 |
| hkil : l = 2n
|
| 0, 0, z | 0, 0, -z + 1/2 | 0, 0, -z | 0, 0, z + 1/2 |
| hkil : l = 2n
|
| | hkil : l = 2n
|
| | hkil : l = 2n
|
Symmetry of special projections
Along [001] p6mm a' = 1/3(2a + b) b' = 1/3(-a + b) Origin at 0, 0, z | Along [100] p2 a' = 1/6(2a + 4b + c) b' = 1/6(-a - 2b + c) Origin at x, 0, 0 | Along [210] p2gm a' = 1/2b b' = 1/3c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] R3c (161) | (1; 2; 3; 10; 11; 12)+ |
| | [2] R32 (155) | (1; 2; 3; 4; 5; 6)+ |
| | [2] R-31 (R-3, 148) | (1; 2; 3; 7; 8; 9)+ |
| ![[brace]](/graphics/sg/brace3.gif) | [3] R12/c (C2/c, 15) | (1; 4; 7; 10)+ | | [3] R12/c (C2/c, 15) | (1; 5; 7; 11)+ | | [3] R12/c (C2/c, 15) | (1; 6; 7; 12)+ |
|
IIa |  | [3] P-3c1 (165) | 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 | | [3] P-3c1 (165) | 1; 2; 3; 10; 11; 12; (4; 5; 6; 7; 8; 9) + (2/3, 1/3, 1/3) | | [3] P-3c1 (165) | 1; 2; 3; 10; 11; 12; (4; 5; 6; 7; 8; 9) + (1/3, 2/3, 2/3) |
|
Maximal isomorphic subgroups of lowest index
IIc | [4] R-3c (a' = -2a, b' = -2b) (167); [5] R-3c (a' = -a, b' = -b, c' = 5c) (167) |
Minimal non-isomorphic supergroups
I | [4] Pn-3n (222); [4] Pm-3n (223); [4] Fm-3c (226); [4] Fd-3c (228); [4] Ia-3d (230) |
II | [2] R-3m (a' = -a, b' = -b, c' = 1/2c) (166); [3] P-31c (a' = 1/3(2a + b), b' = 1/3(-a + b), c' = 1/3c) (163) |

Origin at centre (-3) at -3c
Asymmetric unit | 1/4 ≤ x ≤ 5/4; 1/4 ≤ y ≤ 5/4; 1/4 ≤ z ≤ 3/4; y ≤ x; z ≤ min (y, 3/2 - x) |
Vertices | 1/4, 1/4, 1/4 | 5/4, 1/4, 1/4 | 5/4, 5/4, 1/4 | 3/4, 3/4, 3/4 |
|
(1) 1 | (2) 3+ x, x, x | (3) 3- x, x, x |
(4) 2 -x + 1/2, 1/4, x | (5) 2 x, -x + 1/2, 1/4 | (6) 2 1/4, y + 1/2, -y |
(7) -1 0, 0, 0 | (8) -3+ x, x, x; 0, 0, 0 | (9) -3- x, x, x; 0, 0, 0 |
(10) n(1/2, 1/2, 1/2) x, y, x | (11) n(1/2, 1/2, 1/2) x, x, z | (12) n(1/2, 1/2, 1/2) x, y, y |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) z, x, y | (3) y, z, x | (4) -z + 1/2, -y + 1/2, -x + 1/2 | (5) -y + 1/2, -x + 1/2, -z + 1/2 | (6) -x + 1/2, -z + 1/2, -y + 1/2 | (7) -x, -y, -z | (8) -z, -x, -y | (9) -y, -z, -x | (10) z + 1/2, y + 1/2, x + 1/2 | (11) y + 1/2, x + 1/2, z + 1/2 | (12) x + 1/2, z + 1/2, y + 1/2 |
| hhl : l = 2n hhh : h = 2n
|
| | Special: as above, plus
|
| x, -x + 1/2, 1/4 | 1/4, x, -x + 1/2 | -x + 1/2, 1/4, x | -x, x + 1/2, 3/4 | 3/4, -x, x + 1/2 | x + 1/2, 3/4, -x |
| no extra conditions |
| 1/2, 0, 0 | 0, 1/2, 0 | 0, 0, 1/2 | 1/2, 1/2, 0 | 1/2, 0, 1/2 | 0, 1/2, 1/2 |
| hkl : h + k + l = 2n
|
| x, x, x | -x + 1/2, -x + 1/2, -x + 1/2 | -x, -x, -x | x + 1/2, x + 1/2, x + 1/2 |
| hkl : h + k + l = 2n
|
| | hkl : h + k + l = 2n
|
| 1/4, 1/4, 1/4 | 3/4, 3/4, 3/4 |
| hkl : h + k + l = 2n
|
Symmetry of special projections
Along [111] p6mm a' = 1/3(2a - b - c) b' = 1/3(-a + 2b - c) Origin at x, x, x | Along [1-10] p2 a' = 1/2(a + b - 2c) b' = 1/2c Origin at x, -x, 0 | Along [2-1-1] p2gm a' = 1/2(b - c) b' = 1/3(a + b + c) Origin at 2x, -x, -x |
Maximal non-isomorphic subgroups
I | | [2] R3c (161) | 1; 2; 3; 10; 11; 12 |
| | [2] R32 (155) | 1; 2; 3; 4; 5; 6 |
| | [2] R-31 (R-3, 148) | 1; 2; 3; 7; 8; 9 |
| ![[brace]](/graphics/sg/brace3.gif) | [3] R12/c (C2/c, 15) | 1; 4; 7; 10 | | [3] R12/c (C2/c, 15) | 1; 5; 7; 11 | | [3] R12/c (C2/c, 15) | 1; 6; 7; 12 |
|
IIb | [3] P-3c1 (a' = a - b, b' = b - c, c' = a + b + c) (165) |
Maximal isomorphic subgroups of lowest index
IIc | [4] R-3c (a' = -a + b + c, b' = a - b + c, c' = a + b - c) (167); [5] R-3c (a' = a + 2b + 2c, b' = 2a + b + 2c, c' = 2a + 2b + c) (167) |
Minimal non-isomorphic supergroups
I | [4] Pn-3n (222); [4] Pm-3n (223); [4] Fm-3c (226); [4] Fd-3c (228); [4] Ia-3d (230) |
II | [2] R-3m (a' = 1/2(-a + b + c), b' = 1/2(a - b + c), c' = 1/2(a + b - c)) (166); [3] P-31c (a' = 1/3(2a - b - c), b' = 1/3(-a + 2b - c), c' = 1/3(a + b + c)) (163) |