I213 T5 23 Cubic info
No. 199 I213 Patterson symmetry Im-3

symmetry group diagram

Origin on 3[111] at midpoint of three non-intersecting pairs of parallel 2 axes and of three non-intersecting pairs of parallel 21 axes

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; z ≤ min(xy)
Vertices
0, 0, 0  1/2, 0, 0  1/21/2, 0  0, 1/2, 0  1/21/21/2  

Symmetry operations

For (0, 0, 0)+ set

(1)  1   (2)  2(0, 0, 1/2)   1/4, 0, z(3)  2(0, 1/2, 0)   0, y1/4(4)  2(1/2, 0, 0)   x1/4, 0
(5)  3+   xxx(6)  3+   -x + 1/2x-x(7)  3+   x + 1/2-x - 1/2-x(8)  3+   -x-x + 1/2x
(9)  3-   xxx(10)  3-(-1/31/31/3)   x + 1/6-x + 1/6-x(11)  3-(1/31/3, -1/3)   -x + 1/3-x + 1/6x(12)  3-(1/3, -1/31/3)   -x - 1/6x + 1/3-x

For (1/21/21/2)+ set

(1)  t(1/21/21/2)   (2)  2   0, 1/4z(3)  2   1/4y, 0(4)  2   x, 0, 1/4
(5)  3+(1/21/21/2)   xxx(6)  3+(1/6, -1/61/6)   -x - 1/6x + 1/3-x(7)  3+(-1/61/61/6)   x + 1/6-x + 1/6-x(8)  3+(1/61/6, -1/6)   -x + 1/3-x + 1/6x
(9)  3-(1/21/21/2)   xxx(10)  3-(1/6, -1/6, -1/6)   x + 1/6-x + 1/6-x(11)  3-(-1/6, -1/61/6)   -x + 1/3-x + 1/6x(12)  3-(-1/61/6, -1/6)   -x - 1/6x + 1/3-x

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2); (3); (5)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 (0, 0, 0)+  (1/21/21/2)+  h, k, l cyclically permutable
General:
24 c 1
(1) xyz(2) -x + 1/2-yz + 1/2(3) -xy + 1/2-z + 1/2(4) x + 1/2-y + 1/2-z
(5) zxy(6) z + 1/2-x + 1/2-y(7) -z + 1/2-xy + 1/2(8) -zx + 1/2-y + 1/2
(9) yzx(10) -yz + 1/2-x + 1/2(11) y + 1/2-z + 1/2-x(12) -y + 1/2-zx + 1/2
hkl : h + k + l = 2n
0kl : k + l = 2n
hhl : l = 2n
h00 : h = 2n
    Special: as above, plus
12 b  2 . . 
x, 0, 1/4 -x + 1/2, 0, 3/4 1/4x, 0 3/4-x + 1/2, 0 0, 1/4x 0, 3/4-x + 1/2
no extra conditions
8 a  . 3 . 
xxx -x + 1/2-xx + 1/2 -xx + 1/2-x + 1/2x + 1/2-x + 1/2-x
no extra conditions

Symmetry of special projections

Along [001]   c2mm
a' = a   b' = b   
Origin at 1/4, 0, z
Along [111]   p3
a' = 1/3(2a - b - c)   b' = 1/3(-a + 2b - c)   
Origin at xxx
Along [110]   p1m1
a' = 1/2(-a + b)   b' = 1/2c   
Origin at xx + 1/4, 0

Maximal non-isomorphic subgroups

I [3] I211 (I212121, 24)(1; 2; 3; 4)+
 [brace][4] I13 (R3, 146)(1; 5; 9)+
 [4] I13 (R3, 146)(1; 6; 12)+
 [4] I13 (R3, 146)(1; 7; 10)+
 [4] I13 (R3, 146)(1; 8; 11)+
IIa [2] P213 (198)1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[27] I213 (a' = 3ab' = 3bc' = 3c) (199)

Minimal non-isomorphic supergroups

I[2] Ia-3 (206); [2] I4132 (214); [2] I-43d (220)
II[4] P23 (a' = 1/2a, b' = 1/2b, c' = 1/2c) (195)








































to end of page
to top of page