Origin at 2 3, at -3/8, -3/8, -3/8 from centre (-3)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/8; -1/8 ≤ z ≤ 1/8; y ≤ min(1/2 - x, x); -y ≤ z ≤ y | ||||||
Vertices |
|
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) 2(0, 0, 1/2) 0, 1/4, z | (3) 2(0, 1/2, 0) 1/4, y, 0 | (4) 2(1/2, 0, 0) x, 0, 1/4 |
(5) 3+ x, x, x | (6) 3+(1/3, -1/3, 1/3) -x + 1/6, x + 1/6, -x | (7) 3+(-1/3, 1/3, 1/3) x + 1/3, -x - 1/6, -x | (8) 3+(1/3, 1/3, -1/3) -x + 1/6, -x + 1/3, x |
(9) 3- x, x, x | (10) 3- x, -x + 1/2, -x | (11) 3- -x + 1/2, -x, x | (12) 3- -x - 1/2, x + 1/2, -x |
(13) 2(1/2, 1/2, 0) x, x - 1/4, 3/8 | (14) 2 x, -x + 1/4, 1/8 | (15) 4-(0, 0, 3/4) 1/2, 1/4, z | (16) 4+(0, 0, 1/4) 0, 3/4, z |
(17) 4-(3/4, 0, 0) x, 1/2, 1/4 | (18) 2(0, 1/2, 1/2) 3/8, y + 1/4, y | (19) 2 1/8, y + 1/4, -y | (20) 4+(1/4, 0, 0) x, 0, 3/4 |
(21) 4+(0, 1/4, 0) 3/4, y, 0 | (22) 2(1/2, 0, 1/2) x - 1/4, 3/8, x | (23) 4-(0, 3/4, 0) 1/4, y, 1/2 | (24) 2 -x + 1/4, 1/8, x |
(25) -1 3/8, 3/8, 3/8 | (26) d(3/4, 1/4, 0) x, y, 1/8 | (27) d(1/4, 0, 3/4) x, 1/8, z | (28) d(0, 3/4, 1/4) 1/8, y, z |
(29) -3+ x, x, x; 3/8, 3/8, 3/8 | (30) -3+ -x - 1, x + 1, -x; -3/8, 3/8, 5/8 | (31) -3+ x, -x + 1, -x; 3/8, 5/8, -3/8 | (32) -3+ -x + 1, -x, x; 5/8, -3/8, 3/8 |
(33) -3- x, x, x; 3/8, 3/8, 3/8 | (34) -3- x + 1/2, -x - 1, -x; -1/8, -3/8, 5/8 | (35) -3- -x - 1/2, -x + 1/2, x; -3/8, 5/8, -1/8 | (36) -3- -x + 1, x - 1/2, -x; 5/8, -1/8, -3/8 |
(37) g(-1/4, 1/4, 0) x + 1/4, -x, z | (38) n(1/2, 1/2, 1/2) x, x, z | (39) -4- 1/4, 1/4, z; 1/4, 1/4, 0 | (40) -4+ 0, 0, z; 0, 0, 1/4 |
(41) -4- x, 1/4, 1/4; 0, 1/4, 1/4 | (42) g(0, -1/4, 1/4) x, y + 1/4, -y | (43) n(1/2, 1/2, 1/2) x, y, y | (44) -4+ x, 0, 0; 1/4, 0, 0 |
(45) -4+ 0, y, 0; 0, 1/4, 0 | (46) g(1/4, 0, -1/4) -x + 1/4, y, x | (47) -4- 1/4, y, 1/4; 1/4, 0, 1/4 | (48) n(1/2, 1/2, 1/2) x, y, x |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) 2 0, 0, z | (3) 2 1/4, y, 1/4 | (4) 2(1/2, 0, 0) x, 1/4, 0 |
(5) 3+(1/3, 1/3, 1/3) x - 1/3, x - 1/6, x | (6) 3+ -x + 1/2, x, -x | (7) 3+ x, -x, -x | (8) 3+ -x + 1/2, -x + 1/2, x |
(9) 3-(1/3, 1/3, 1/3) x - 1/6, x + 1/6, x | (10) 3- x + 1/2, -x, -x | (11) 3-(1/3, 1/3, -1/3) -x + 1/3, -x + 1/6, x | (12) 3- -x, x, -x |
(13) 2(3/4, 3/4, 0) x, x, 1/8 | (14) 2(-1/4, 1/4, 0) x, -x + 1/2, 3/8 | (15) 4-(0, 0, 1/4) 1/4, 0, z | (16) 4+(0, 0, 3/4) 1/4, 1/2, z |
(17) 4-(3/4, 0, 0) x, 1/2, -1/4 | (18) 2(0, 1/2, 1/2) 3/8, y - 1/4, y | (19) 2 1/8, y + 3/4, -y | (20) 4+(1/4, 0, 0) x, 0, 1/4 |
(21) 4+(0, 3/4, 0) 1/2, y, -1/4 | (22) 2(1/4, 0, 1/4) x, 1/8, x | (23) 4-(0, 1/4, 0) 0, y, 3/4 | (24) 2(-1/4, 0, 1/4) -x + 1/2, 3/8, x |
(25) -1 3/8, 1/8, 1/8 | (26) d(3/4, 3/4, 0) x, y, 3/8 | (27) d(1/4, 0, 1/4) x, 3/8, z | (28) d(0, 1/4, 3/4) 1/8, y, z |
(29) -3+ x, x - 1/2, x; 3/8, -1/8, 3/8 | (30) -3+ -x - 1, x + 1/2, -x; -3/8, -1/8, 5/8 | (31) -3+ x, -x + 3/2, -x; 3/8, 9/8, -3/8 | (32) -3+ -x + 1, -x + 1/2, x; 5/8, 1/8, 3/8 |
(33) -3- x + 1/2, x + 1/2, x; 3/8, 3/8, -1/8 | (34) -3- x + 1, -x - 1/2, -x; 3/8, 1/8, 5/8 | (35) -3- -x, -x + 1, x; -3/8, 5/8, 3/8 | (36) -3- -x + 3/2, x, -x; 9/8, 3/8, -3/8 |
(37) c x, -x, z | (38) g(1/4, 1/4, 0) x + 1/4, x, z | (39) -4- 0, 1/2, z; 0, 1/2, 1/4 | (40) -4+ 1/4, 1/4, z; 1/4, 1/4, 0 |
(41) -4- x, -1/4, 1/4; 0, -1/4, 1/4 | (42) g(0, 1/4, -1/4) x, y + 1/4, -y | (43) a x, y, y | (44) -4+ x, 1/2, 0; 1/4, 1/2, 0 |
(45) -4+ -1/4, y, 1/4; -1/4, 0, 1/4 | (46) b -x + 1/2, y, x | (47) -4- 0, y, 0; 0, 1/4, 0 | (48) g(1/4, 0, 1/4) x + 1/4, y, x |
For (1/2, 0, 1/2)+ set
(1) t(1/2, 0, 1/2) | (2) 2 1/4, 1/4, z | (3) 2(0, 1/2, 0) 0, y, 1/4 | (4) 2 x, 0, 0 |
(5) 3+(1/3, 1/3, 1/3) x + 1/6, x - 1/6, x | (6) 3+ -x, x, -x | (7) 3+ x + 1/2, -x, -x | (8) 3+ -x, -x + 1/2, x |
(9) 3-(1/3, 1/3, 1/3) x - 1/6, x - 1/3, x | (10) 3-(-1/3, 1/3, 1/3) x + 1/6, -x + 1/6, -x | (11) 3- -x, -x, x | (12) 3- -x, x + 1/2, -x |
(13) 2(1/4, 1/4, 0) x, x, 1/8 | (14) 2(1/4, -1/4, 0) x, -x + 1/2, 3/8 | (15) 4-(0, 0, 1/4) 3/4, 0, z | (16) 4+(0, 0, 3/4) -1/4, 1/2, z |
(17) 4-(1/4, 0, 0) x, 1/4, 0 | (18) 2(0, 3/4, 3/4) 1/8, y, y | (19) 2(0, -1/4, 1/4) 3/8, y + 1/2, -y | (20) 4+(3/4, 0, 0) x, 1/4, 1/2 |
(21) 4+(0, 1/4, 0) 1/4, y, 0 | (22) 2(1/2, 0, 1/2) x + 1/4, 3/8, x | (23) 4-(0, 3/4, 0) -1/4, y, 1/2 | (24) 2 -x + 3/4, 1/8, x |
(25) -1 1/8, 3/8, 1/8 | (26) d(1/4, 1/4, 0) x, y, 3/8 | (27) d(3/4, 0, 1/4) x, 1/8, z | (28) d(0, 3/4, 3/4) 3/8, y, z |
(29) -3+ x + 1/2, x + 1/2, x; 3/8, 3/8, -1/8 | (30) -3+ -x - 3/2, x + 3/2, -x; -3/8, 3/8, 9/8 | (31) -3+ x + 1/2, -x + 1/2, -x; 3/8, 5/8, 1/8 | (32) -3+ -x + 1/2, -x - 1/2, x; 5/8, -3/8, -1/8 |
(33) -3- x - 1/2, x, x; -1/8, 3/8, 3/8 | (34) -3- x + 1, -x - 1, -x; 3/8, -3/8, 5/8 | (35) -3- -x, -x + 3/2, x; -3/8, 9/8, 3/8 | (36) -3- -x + 1/2, x + 1/2, -x; 5/8, 3/8, 1/8 |
(37) c x + 1/2, -x, z | (38) g(1/4, 1/4, 0) x - 1/4, x, z | (39) -4- 0, 0, z; 0, 0, 1/4 | (40) -4+ 1/4, -1/4, z; 1/4, -1/4, 0 |
(41) -4- x, 0, 1/2; 1/4, 0, 1/2 | (42) a x, y, -y | (43) g(0, 1/4, 1/4) x, y + 1/4, y | (44) -4+ x, 1/4, 1/4; 0, 1/4, 1/4 |
(45) -4+ 0, y, 1/2; 0, 1/4, 1/2 | (46) g(-1/4, 0, 1/4) -x + 1/4, y, x | (47) -4- 1/4, y, -1/4; 1/4, 0, -1/4 | (48) b x, y, x |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2(0, 0, 1/2) 1/4, 0, z | (3) 2 0, y, 0 | (4) 2 x, 1/4, 1/4 |
(5) 3+(1/3, 1/3, 1/3) x + 1/6, x + 1/3, x | (6) 3+ -x, x + 1/2, -x | (7) 3+ x + 1/2, -x - 1/2, -x | (8) 3+ -x, -x, x |
(9) 3-(1/3, 1/3, 1/3) x + 1/3, x + 1/6, x | (10) 3- x, -x, -x | (11) 3- -x + 1/2, -x + 1/2, x | (12) 3-(1/3, -1/3, 1/3) -x - 1/6, x + 1/3, -x |
(13) 2(1/2, 1/2, 0) x, x + 1/4, 3/8 | (14) 2 x, -x + 3/4, 1/8 | (15) 4-(0, 0, 3/4) 1/2, -1/4, z | (16) 4+(0, 0, 1/4) 0, 1/4, z |
(17) 4-(1/4, 0, 0) x, 3/4, 0 | (18) 2(0, 1/4, 1/4) 1/8, y, y | (19) 2(0, 1/4, -1/4) 3/8, y + 1/2, -y | (20) 4+(3/4, 0, 0) x, -1/4, 1/2 |
(21) 4+(0, 3/4, 0) 1/2, y, 1/4 | (22) 2(3/4, 0, 3/4) x, 1/8, x | (23) 4-(0, 1/4, 0) 0, y, 1/4 | (24) 2(1/4, 0, -1/4) -x + 1/2, 3/8, x |
(25) -1 1/8, 1/8, 3/8 | (26) d(1/4, 3/4, 0) x, y, 1/8 | (27) d(3/4, 0, 3/4) x, 3/8, z | (28) d(0, 1/4, 1/4) 3/8, y, z |
(29) -3+ x - 1/2, x, x; -1/8, 3/8, 3/8 | (30) -3+ -x - 1/2, x + 1, -x; 1/8, 3/8, 5/8 | (31) -3+ x - 1/2, -x + 1, -x; -1/8, 5/8, -3/8 | (32) -3+ -x + 3/2, -x, x; 9/8, -3/8, 3/8 |
(33) -3- x, x - 1/2, x; 3/8, -1/8, 3/8 | (34) -3- x + 3/2, -x - 3/2, -x; 3/8, -3/8, 9/8 | (35) -3- -x + 1/2, -x + 1, x; 1/8, 5/8, 3/8 | (36) -3- -x + 1, x, -x; 5/8, 3/8, -3/8 |
(37) g(1/4, -1/4, 0) x + 1/4, -x, z | (38) c x, x, z | (39) -4- -1/4, 1/4, z; -1/4, 1/4, 0 | (40) -4+ 1/2, 0, z; 1/2, 0, 1/4 |
(41) -4- x, 0, 0; 1/4, 0, 0 | (42) a x, y + 1/2, -y | (43) g(0, 1/4, 1/4) x, y - 1/4, y | (44) -4+ x, 1/4, -1/4; 0, 1/4, -1/4 |
(45) -4+ 1/4, y, 1/4; 1/4, 0, 1/4 | (46) b -x, y, x | (47) -4- 1/2, y, 0; 1/2, 1/4, 0 | (48) g(1/4, 0, 1/4) x - 1/4, y, x |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); t(1/2, 0, 1/2); (2); (3); (5); (13); (25)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||||||||||||||||||||||||||||||||||||||||||||
(0, 0, 0)+ (0, 1/2, 1/2)+ (1/2, 0, 1/2)+ (1/2, 1/2, 0)+ | h, k, l permutable General: | ||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| hkl : h + k = 2n and h + l, k + l = 2n 0kl : k + l = 4n and k, l = 2n hhl : h, l = 2n h00 : h = 4n |
Special: as above, plus | |||||||||||||||||||||||||||||
|
| no extra conditions | |||||||||||||||||||||||||||
|
| hkl : h + k + l = 4n | |||||||||||||||||||||||||||
|
| hkl : h = 2n | |||||||||||||||||||||||||||
|
| hkl : h + k + l = 4n | |||||||||||||||||||||||||||
|
| hkl : h, k, l = 4n + 2 or h, k, l = 4n | |||||||||||||||||||||||||||
|
| hkl : h, k, l = 4n + 2 or h, k, l = 4n | |||||||||||||||||||||||||||
|
| hkl : h + k + l = 4n |
Symmetry of special projections
Along [001] p4mm a' = 1/4(a - b) b' = 1/4(a + b) Origin at 0, 0, z | Along [111] p6mm a' = 1/6(2a - b - c) b' = 1/6(-a + 2b - c) Origin at x, x, x | Along [110] p2mm a' = 1/4(-a + b) b' = 1/2c Origin at x, x, 1/8 |
Maximal non-isomorphic subgroups
I | [2] F-43c (219) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48)+ | ||||||||||||||
[2] F4132 (210) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24)+ | |||||||||||||||
[2] Fd-31 (Fd-3, 203) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36)+ | |||||||||||||||
| ||||||||||||||||
|
IIa | none |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [27] Fd-3c (a' = 3a, b' = 3b, c' = 3c) (228) |
Minimal non-isomorphic supergroups
I | none |
II | [2] Pn-3m (a' = 1/2a, b' = 1/2b, c' = 1/2c) (224) |
Origin at centre (-3), at 3/8, 3/8, 3/8 from 2 3
Asymmetric unit | -1/8 ≤ x ≤ 3/8; -1/8 ≤ y ≤ 0; -1/4 ≤ z ≤ 0; y ≤ min(1/4 - x, x); -y - 1/4 ≤ z ≤ y | ||||||
Vertices |
|
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) 2(0, 0, 1/2) 1/8, 3/8, z | (3) 2(0, 1/2, 0) 3/8, y, 1/8 | (4) 2(1/2, 0, 0) x, 1/8, 3/8 |
(5) 3+ x, x, x | (6) 3+(1/3, -1/3, 1/3) -x + 1/6, x + 5/12, -x | (7) 3+(-1/3, 1/3, 1/3) x + 7/12, -x - 1/6, -x | (8) 3+(1/3, 1/3, -1/3) -x + 5/12, -x + 7/12, x |
(9) 3- x, x, x | (10) 3- x + 1/4, -x + 1/2, -x | (11) 3- -x + 3/4, -x + 1/4, x | (12) 3- -x - 1/2, x + 3/4, -x |
(13) 2(1/2, 1/2, 0) x, x - 1/4, 0 | (14) 2 x, -x + 1/2, 1/4 | (15) 4-(0, 0, 3/4) 1/8, -1/8, z | (16) 4+(0, 0, 1/4) -3/8, 3/8, z |
(17) 4-(3/4, 0, 0) x, 1/8, -1/8 | (18) 2(0, 1/2, 1/2) 0, y + 1/4, y | (19) 2 1/4, y + 1/2, -y | (20) 4+(1/4, 0, 0) x, -3/8, 3/8 |
(21) 4+(0, 1/4, 0) 3/8, y, -3/8 | (22) 2(1/2, 0, 1/2) x - 1/4, 0, x | (23) 4-(0, 3/4, 0) -1/8, y, 1/8 | (24) 2 -x + 1/2, 1/4, x |
(25) -1 0, 0, 0 | (26) d(3/4, 1/4, 0) x, y, 1/4 | (27) d(1/4, 0, 3/4) x, 1/4, z | (28) d(0, 3/4, 1/4) 1/4, y, z |
(29) -3+ x, x, x; 0, 0, 0 | (30) -3+ -x - 1, x + 5/4, -x; -1/4, 1/2, 3/4 | (31) -3+ x + 1/4, -x + 1, -x; 1/2, 3/4, -1/4 | (32) -3+ -x + 5/4, -x + 1/4, x; 3/4, -1/4, 1/2 |
(33) -3- x, x, x; 0, 0, 0 | (34) -3- x + 3/4, -x - 1, -x; 0, -1/4, 3/4 | (35) -3- -x - 1/4, -x + 3/4, x; -1/4, 3/4, 0 | (36) -3- -x + 1, x - 1/4, -x; 3/4, 0, -1/4 |
(37) g(-1/4, 1/4, 0) x + 1/2, -x, z | (38) n(1/2, 1/2, 1/2) x, x, z | (39) -4- 3/8, 3/8, z; 3/8, 3/8, 1/8 | (40) -4+ 1/8, 1/8, z; 1/8, 1/8, 3/8 |
(41) -4- x, 3/8, 3/8; 1/8, 3/8, 3/8 | (42) g(0, -1/4, 1/4) x, y + 1/2, -y | (43) n(1/2, 1/2, 1/2) x, y, y | (44) -4+ x, 1/8, 1/8; 3/8, 1/8, 1/8 |
(45) -4+ 1/8, y, 1/8; 1/8, 3/8, 1/8 | (46) g(1/4, 0, -1/4) -x + 1/2, y, x | (47) -4- 3/8, y, 3/8; 3/8, 1/8, 3/8 | (48) n(1/2, 1/2, 1/2) x, y, x |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) 2 1/8, 1/8, z | (3) 2 3/8, y, 3/8 | (4) 2(1/2, 0, 0) x, 3/8, 1/8 |
(5) 3+(1/3, 1/3, 1/3) x - 1/3, x - 1/6, x | (6) 3+ -x + 1/2, x + 1/4, -x | (7) 3+ x + 1/4, -x, -x | (8) 3+ -x + 3/4, -x + 3/4, x |
(9) 3-(1/3, 1/3, 1/3) x - 1/6, x + 1/6, x | (10) 3- x + 3/4, -x, -x | (11) 3-(1/3, 1/3, -1/3) -x + 7/12, -x + 5/12, x | (12) 3- -x, x + 1/4, -x |
(13) 2(3/4, 3/4, 0) x, x, 1/4 | (14) 2(1/4, -1/4, 0) x, -x + 1/4, 0 | (15) 4-(0, 0, 1/4) 3/8, 1/8, z | (16) 4+(0, 0, 3/4) -1/8, 1/8, z |
(17) 4-(3/4, 0, 0) x, 5/8, -1/8 | (18) 2(0, 1/2, 1/2) 0, y - 1/4, y | (19) 2 1/4, y, -y | (20) 4+(1/4, 0, 0) x, 1/8, 3/8 |
(21) 4+(0, 3/4, 0) 5/8, y, -1/8 | (22) 2(1/4, 0, 1/4) x, 1/4, x | (23) 4-(0, 1/4, 0) -3/8, y, 3/8 | (24) 2(1/4, 0, -1/4) -x + 1/4, 0, x |
(25) -1 0, 1/4, 1/4 | (26) d(3/4, 3/4, 0) x, y, 0 | (27) d(1/4, 0, 1/4) x, 0, z | (28) d(0, 1/4, 3/4) 1/4, y, z |
(29) -3+ x, x + 1/2, x; 0, 1/2, 0 | (30) -3+ -x - 1, x + 3/4, -x; -1/4, 0, 3/4 | (31) -3+ x - 3/4, -x + 3/2, -x; 0, 3/4, -3/4 | (32) -3+ -x + 1/4, -x - 1/4, x; 1/4, -1/4, 0 |
(33) -3- x - 1/2, x - 1/2, x; 0, 0, 1/2 | (34) -3- x + 1/4, -x - 1/2, -x; 0, -1/4, 1/4 | (35) -3- -x + 1/4, -x + 5/4, x; -1/4, 3/4, 1/2 | (36) -3- -x + 3/2, x - 3/4, -x; 3/4, 0, -3/4 |
(37) c x + 1/4, -x, z | (38) g(1/4, 1/4, 0) x + 1/4, x, z | (39) -4- 1/8, 5/8, z; 1/8, 5/8, 3/8 | (40) -4+ 3/8, 3/8, z; 3/8, 3/8, 1/8 |
(41) -4- x, -1/8, 3/8; 1/8, -1/8, 3/8 | (42) g(0, 1/4, -1/4) x, y + 1/2, -y | (43) a x, y, y | (44) -4+ x, 5/8, 1/8; 3/8, 5/8, 1/8 |
(45) -4+ -1/8, y, 3/8; -1/8, 1/8, 3/8 | (46) b -x + 3/4, y, x | (47) -4- 1/8, y, 1/8; 1/8, 3/8, 1/8 | (48) g(1/4, 0, 1/4) x + 1/4, y, x |
For (1/2, 0, 1/2)+ set
(1) t(1/2, 0, 1/2) | (2) 2 3/8, 3/8, z | (3) 2(0, 1/2, 0) 1/8, y, 3/8 | (4) 2 x, 1/8, 1/8 |
(5) 3+(1/3, 1/3, 1/3) x + 1/6, x - 1/6, x | (6) 3+ -x, x + 1/4, -x | (7) 3+ x + 3/4, -x, -x | (8) 3+ -x + 1/4, -x + 3/4, x |
(9) 3-(1/3, 1/3, 1/3) x - 1/6, x - 1/3, x | (10) 3-(-1/3, 1/3, 1/3) x + 5/12, -x + 1/6, -x | (11) 3- -x + 1/4, -x + 1/4, x | (12) 3- -x, x + 3/4, -x |
(13) 2(1/4, 1/4, 0) x, x, 1/4 | (14) 2(-1/4, 1/4, 0) x, -x + 1/4, 0 | (15) 4-(0, 0, 1/4) 3/8, -3/8, z | (16) 4+(0, 0, 3/4) -1/8, 5/8, z |
(17) 4-(1/4, 0, 0) x, 3/8, 1/8 | (18) 2(0, 3/4, 3/4) 1/4, y, y | (19) 2(0, 1/4, -1/4) 0, y + 1/4, -y | (20) 4+(3/4, 0, 0) x, -1/8, 1/8 |
(21) 4+(0, 1/4, 0) 3/8, y, 1/8 | (22) 2(1/2, 0, 1/2) x + 1/4, 0, x | (23) 4-(0, 3/4, 0) -1/8, y, 5/8 | (24) 2 -x, 1/4, x |
(25) -1 1/4, 0, 1/4 | (26) d(1/4, 1/4, 0) x, y, 0 | (27) d(3/4, 0, 1/4) x, 1/4, z | (28) d(0, 3/4, 3/4) 0, y, z |
(29) -3+ x - 1/2, x - 1/2, x; 0, 0, 1/2 | (30) -3+ -x - 3/2, x + 3/4, -x; -3/4, 0, 3/4 | (31) -3+ x - 1/4, -x + 1/2, -x; 0, 1/4, -1/4 | (32) -3+ -x + 3/4, -x - 1/4, x; 3/4, -1/4, 0 |
(33) -3- x + 1/2, x, x; 1/2, 0, 0 | (34) -3- x + 5/4, -x - 1, -x; 1/2, -1/4, 3/4 | (35) -3- -x - 3/4, -x + 3/4, x; -3/4, 3/4, 0 | (36) -3- -x + 1/2, x - 1/4, -x; 1/4, 0, -1/4 |
(37) c x + 3/4, -x, z | (38) g(1/4, 1/4, 0) x - 1/4, x, z | (39) -4- 1/8, 1/8, z; 1/8, 1/8, 3/8 | (40) -4+ 3/8, -1/8, z; 3/8, -1/8, 1/8 |
(41) -4- x, 1/8, 5/8; 3/8, 1/8, 5/8 | (42) a x, y + 1/4, -y | (43) g(0, 1/4, 1/4) x, y + 1/4, y | (44) -4+ x, 3/8, 3/8; 1/8, 3/8, 3/8 |
(45) -4+ 1/8, y, 5/8; 1/8, 3/8, 5/8 | (46) g(-1/4, 0, 1/4) -x + 1/2, y, x | (47) -4- 3/8, y, -1/8; 3/8, 1/8, -1/8 | (48) b x, y, x |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2(0, 0, 1/2) 3/8, 1/8, z | (3) 2 1/8, y, 1/8 | (4) 2 x, 3/8, 3/8 |
(5) 3+(1/3, 1/3, 1/3) x + 1/6, x + 1/3, x | (6) 3+ -x, x + 3/4, -x | (7) 3+ x + 3/4, -x - 1/2, -x | (8) 3+ -x + 1/4, -x + 1/4, x |
(9) 3-(1/3, 1/3, 1/3) x + 1/3, x + 1/6, x | (10) 3- x + 1/4, -x, -x | (11) 3- -x + 3/4, -x + 3/4, x | (12) 3-(1/3, -1/3, 1/3) -x - 1/6, x + 7/12, -x |
(13) 2(1/2, 1/2, 0) x, x + 1/4, 0 | (14) 2 x, -x, 1/4 | (15) 4-(0, 0, 3/4) 5/8, -1/8, z | (16) 4+(0, 0, 1/4) 1/8, 3/8, z |
(17) 4-(1/4, 0, 0) x, 3/8, -3/8 | (18) 2(0, 1/4, 1/4) 1/4, y, y | (19) 2(0, -1/4, 1/4) 0, y + 1/4, -y | (20) 4+(3/4, 0, 0) x, -1/8, 5/8 |
(21) 4+(0, 3/4, 0) 1/8, y, -1/8 | (22) 2(3/4, 0, 3/4) x, 1/4, x | (23) 4-(0, 1/4, 0) 1/8, y, 3/8 | (24) 2(-1/4, 0, 1/4) -x + 1/4, 0, x |
(25) -1 1/4, 1/4, 0 | (26) d(1/4, 3/4, 0) x, y, 1/4 | (27) d(3/4, 0, 3/4) x, 0, z | (28) d(0, 1/4, 1/4) 0, y, z |
(29) -3+ x + 1/2, x, x; 1/2, 0, 0 | (30) -3+ -x - 1/2, x + 1/4, -x; -1/4, 0, 1/4 | (31) -3+ x - 1/4, -x + 1, -x; 0, 3/4, -1/4 | (32) -3+ -x + 3/4, -x - 3/4, x; 3/4, -3/4, 0 |
(33) -3- x, x + 1/2, x; 0, 1/2, 0 | (34) -3- x + 3/4, -x - 3/2, -x; 0, -3/4, 3/4 | (35) -3- -x - 1/4, -x + 1/4, x; -1/4, 1/4, 0 | (36) -3- -x + 1, x + 1/4, -x; 3/4, 1/2, -1/4 |
(37) g(1/4, -1/4, 0) x + 1/2, -x, z | (38) c x, x, z | (39) -4- -1/8, 3/8, z; -1/8, 3/8, 1/8 | (40) -4+ 5/8, 1/8, z; 5/8, 1/8, 3/8 |
(41) -4- x, 1/8, 1/8; 3/8, 1/8, 1/8 | (42) a x, y + 3/4, -y | (43) g(0, 1/4, 1/4) x, y - 1/4, y | (44) -4+ x, 3/8, -1/8; 1/8, 3/8, -1/8 |
(45) -4+ 3/8, y, 3/8; 3/8, 1/8, 3/8 | (46) b -x + 1/4, y, x | (47) -4- 5/8, y, 1/8; 5/8, 3/8, 1/8 | (48) g(1/4, 0, 1/4) x - 1/4, y, x |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); t(1/2, 0, 1/2); (2); (3); (5); (13); (25)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||||||||||||||||||||||||||||||||||||||||||||
(0, 0, 0)+ (0, 1/2, 1/2)+ (1/2, 0, 1/2)+ (1/2, 1/2, 0)+ | h, k, l permutable General: | ||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| hkl : h + k = 2n and h + l, k + l = 2n 0kl : k + l = 4n and k, l = 2n hhl : h, l = 2n h00 : h = 4n |
Special: as above, plus | |||||||||||||||||||||||||||||
|
| no extra conditions | |||||||||||||||||||||||||||
|
| hkl : h + k + l = 4n | |||||||||||||||||||||||||||
|
| hkl : h = 2n | |||||||||||||||||||||||||||
|
| hkl : h + k + l = 4n | |||||||||||||||||||||||||||
|
| hkl : h, k, l = 4n + 2 or h, k, l = 4n | |||||||||||||||||||||||||||
|
| hkl : h, k, l = 4n + 2 or h, k, l = 4n | |||||||||||||||||||||||||||
|
| hkl : h + k + l = 4n |
Symmetry of special projections
Along [001] p4mm a' = 1/4(a - b) b' = 1/4(a + b) Origin at 1/8, 3/8, z | Along [111] p6mm a' = 1/6(2a - b - c) b' = 1/6(-a + 2b - c) Origin at x, x, x | Along [110] p2mm a' = 1/4(-a + b) b' = 1/2c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | [2] F-43c (219) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48)+ | ||||||||||||||
[2] F4132 (210) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24)+ | |||||||||||||||
[2] Fd-31 (Fd-3, 203) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36)+ | |||||||||||||||
| ||||||||||||||||
|
IIa | none |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [27] Fd-3c (a' = 3a, b' = 3b, c' = 3c) (228) |
Minimal non-isomorphic supergroups
I | none |
II | [2] Pn-3m (a' = 1/2a, b' = 1/2b, c' = 1/2c) (224) |