International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 1.2, pp. 6-9
https://doi.org/10.1107/97809553602060000573

Chapter 1.2. Application to the crystal systems

E. Kocha

a Institut für Mineralogie, Petrologie und Kristallographie, Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany

In this chapter, all general formulae from Chapter 1.1[link] are simplified according to the metrical specializations in the monoclinic, orthorhombic, trigonal and hexagonal, tetragonal and cubic crystal systems.

Keywords: crystal systems; crystals; cubic crystal system; hexagonal crystal system; monoclinic crystal system; orthorhombic crystal system; rhombohedral crystal system; tetragonal crystal system; triclinic crystal system; trigonal crystal system.

Information on the description and classification of Bravais lattices, their assignment to crystal systems, the choice of basis vectors for reduced or conventional basis systems, and on basis transformations is given in IT A (2005[link], Parts 5[link] and 9[link] ). In the following, for each crystal system, the metrical conditions for conventionally chosen basis systems and the possible Bravais types of lattices are listed. As some of the general formulae from Chapter 1.1[link] become simpler when not applied to a lattice with general (triclinic) metric, these simplified formulae are tabulated for all crystal systems (except triclinic).

Except for triclinic, monoclinic, and orthorhombic symmetry, tables are given that relate pairs h, k or triplets h, k, l of indices to certain sums s of products of these indices needed in equation (1.1.2.2[link] ). Such tables may be useful, for example, for indexing powder diffraction patterns.

1.2.1. Triclinic crystal system

| top | pdf |

No metrical conditions: a, b, c, α, β, γ arbitrary

Bravais lattice type: aP

Symmetry of lattice points: [\bar 1]

1.2.2. Monoclinic crystal system

| top | pdf |

Bravais lattice types: mP, mS

Symmetry of lattice points: 2/m

1.2.2.1. Setting with `unique axis b'

| top | pdf |

Metrical conditions: a, b, c, β arbitrary; α = γ = 90°

Bravais lattice types: mP, mC or mA or mI

Symmetry of lattice points: .2/m.

Simplified formulae:[V=({\bf abc})=\left[\left|\matrix{a^{2}&0&ac\cos \beta \cr 0&b^{2}&0\cr ac\cos \beta&0&c^{2}}\right|\right]^{1/2} =abc\sin\beta, \eqno(1.1.1.1a)] [\eqalign{ &a^*={1\over a\sin \beta},\quad b^*={1\over b},\quad c^*={1\over c\sin \beta}, \cr &\alpha^*=\gamma^*=90^\circ,\quad \beta^*=180^\circ - \beta, } \Biggr\rbrace \eqno(1.1.1.3a)] [\eqalignno{V^* & =({\bf a}^{*}{\bf b}^{*}{\bf c}^{*})=\left[\left|\matrix{ a^{*2}&0&a^*c^*\cos\beta^* \cr 0&b^{*2}&0 \cr a^*c^*\cos\beta^*&0&c^{*2}}\right|\right]^{1/2} \cr &=a^*b^*c^*\sin\beta^*, & (1.1.1.4a)}] [\left. \eqalign{ a&={1\over a^*\sin\beta^*},\quad b={1\over b^*},\quad c={1\over c^*\sin\beta^*}, \cr \alpha&=\gamma=90^\circ,\quad\beta=180^\circ-\beta^*,}\right\} \eqno (1.1.1.7a)] [t^2=u^2a^2+v^2b^2+w^2c^2+2uwac\cos\beta, \eqno (1.1.2.1a)] [r^{*2}=h^2a^{*2}+k^2b^{*2}+l^2c^{*2}+2hla^*c^*\cos\beta^*, \eqno (1.1.2.2a)] [{a\over h}(au+cw\cos\beta)={b^2v\over k}={c\over l}(au\cos\beta+cw), \eqno (1.1.2.12a)] [\eqalignno{ {\bf t}_1\cdot {\bf t}_2 &=u_1u_2a^2+v_1v_2b^2+w_1w_2c^2 \ \, \cr &\quad+(u_1w_2+u_2w_1)ac\cos\beta, & (1.1.3.4a)}] [\eqalignno{ {\bf r}^*_1\cdot {\bf r}^*_2 &= h_1h_2a^{*2}+k_1k_2b^{*2}+l_1l_2c^{*2} \cr &\quad+(h_1l_2+h_2l_1)a^*c^*\cos\beta^*. &(1.1.3.7a)}]

1.2.2.2. Setting with `unique axis c'

| top | pdf |

Metrical conditions: a, b, c, γ arbitrary; α = β = 90°

Bravais lattice types: mP, mB or mA or mI

Symmetry of lattice points: ..2/m

Simplified formulae: [V=({\bf abc})=\left[\left| \matrix{ a^2&ab\cos\gamma&0 \cr ab\cos\gamma&b^2&0 \cr 0&0&c^2}\right|\right]^{1/2}=abc\sin\gamma, \eqno (1.1.1.1b)] [\eqalign{&a^*={1\over a\sin\gamma}, \quad b^*={1\over b\sin\gamma}, \quad c^*={1\over c}, \cr &\alpha^*=\beta^*=90^\circ, \quad \gamma^*=180^\circ - \gamma, } \Biggr\rbrace \eqno(1.1.1.3b)] [\eqalignno{V^*&=({\bf a}^*{\bf b}^*{\bf c}^*)=\left[\left| \matrix{ a^{*2}&a^*b^*\cos\gamma^*&0 \cr a^*b^*\cos\gamma^*&b^{*2}&0 \cr 0&0&c^{*2}}\right|\right]^{1/2} \cr &=a^*b^*c^*\sin\gamma^*, &(1.1.1.4b)}] [\left. \eqalign{ a&={1\over a^*\sin\gamma^*}, \quad b={1\over b^*\sin\gamma^*}, \quad c={1\over c^*}, \cr \alpha &=\beta=90^\circ, \quad \gamma=180^\circ-\gamma^*,}\right\} \eqno (1.1.1.7b)] [t^2=u^2a^2+v^2b^2+w^2c^2+2uvab\cos\gamma, \eqno (1.1.2.1b)] [r^{*2}=h^2a^{*2}+k^2b^{*2}+l^2c^{*2}+2hka^*b^*\cos\gamma^*,\eqno (1.1.2.2b)] [{a\over h}(au+bv\cos\gamma)={b\over k}(au\cos\gamma+bv)={c^2w\over l}, \eqno (1.1.2.12b)] [\eqalignno{ {\bf t}_1\cdot{\bf t}_2&=u_1u_2a^2+v_1v_2b^2+w_1w_2c^2 \cr &\quad +(u_1v_2+u_2v_1)ab\cos\gamma, &(1.1.3.4b)}] [\eqalignno{ {\bf r}^*_1\cdot{\bf r}^*_2&=h_1h_2a^{*2}+k_1k_2b^{*2}+l_1l_2c^{*2} \cr &\quad +(h_1k_2+h_2k_1)a^*b^*\cos\gamma^*. & (1.1.3.7b)}]

1.2.3. Orthorhombic crystal system

| top | pdf |

Metrical conditions: a, b, c arbitrary; α = β = γ = 90°

Bravais lattice types: oP, oS (oC, oA), oI, oF

Symmetry of lattice points: mmm

Simplified formulae: [V=({\bf abc})=\left[\left| \matrix{ a^2&0&0 \cr 0&b^2&0 \cr 0&0&c^2}\right|\right]^{1/2}=abc, \eqno (1.1.1.1c)] [a^*={1\over a}, \quad b^*={1\over b}, \quad c^*={1\over c},\quad \alpha^*=\beta^*=\gamma^*=90^\circ, \eqno (1.1.1.3c)] [\eqalignno{ V^*&=({\bf a}^*{\bf b}^*{\bf c}^*)=\left [\left| \matrix{ a^{*2}&0&0 \cr 0&b^{*2}&0 \cr 0&0&c^{*2}}\right |\right] ^{1/2} \cr &=a^*b^*c^*=a^{-1}b^{-1}c^{-1}, &(1.1.1.4c)}] [a={1\over a^*}, \quad b={1\over b^*}, \quad c={1\over c^*}, \quad\alpha=\beta=\gamma=90^\circ, \eqno (1.1.1.7c)] [t^2=u^2a^2+v^2b^2+w^2c^2, \eqno (1.1.2.1c)] [r^{*2}=h^2a^{*2}+k^2b^{*2}+l^2w^{*2}, \eqno (1.1.2.2c)] [{a^2u\over h}={b^2v\over k}={c^2w\over l}, \eqno (1.1.2.12c)] [{\bf t}_1\cdot{\bf t}_2=u_1u_2a^2+v_1v_2b^2+w_1w_2c^2, \eqno (1.1.3.4c)] [{\bf r}^*_1\cdot {\bf r}^*_2=h_1h_2a^{*2}+k_1k_2b^{*2}+l_1l_2c^{*2}. \eqno (1.1.3.7c)]

1.2.4. Tetragonal crystal system

| top | pdf |

Metrical conditions: a = b; c arbitrary; α = β = γ = 90°

Bravais lattice types: tP, tI

Symmetry of lattice points: 4/mmm

Simplified formulae: [V=({\bf abc})=\left[\left| \matrix{ a^2&0&0 \cr 0&a^2&0 \cr 0&0&c^2}\right|\right]^{1/2}=a^2c, \eqno(1.1.1.1d)] [a^*=b^*={1\over a}, \quad c^*={1\over c}, \quad \alpha^*=\beta^*=\gamma^*=90^\circ, \eqno (1.1.1.3d)] [\eqalignno{\qquad\qquad V^*& =({\bf a}^*{\bf b}^*{\bf c}^*)=\left[\left| \matrix{ a^{*2}&0&0 \cr 0&a^{*2}&0 \cr 0&0&c^{*2}}\right|\right]^{1/2} \cr &=a^{*2}c^*=a^{-2}c^{-1}, & (1.1.1.4d)}] [a=b={1\over a^*}, \quad c={1\over c^*}, \quad \alpha=\beta=\gamma=90^\circ, \eqno (1.1.1.7d)] [t^2=(u^2+v^2)a^2+w^2c^2, \eqno (1.1.2.1d)] [r^{*2}=(h^2+k^2)a^{*2}+l ^2c^{*2}=sa^{*2}+l ^2c^{*2} \eqno (1.1.2.2d)]with [s=h^2+k^2.]For each value of [s\le100], all corresponding pairs h, k are listed in Table 1.2.4.1[link]. [{u\over h}={v\over k}={c^2w \over a^2l}, \eqno (1.1.2.12d)] [{\bf t}_1\cdot {\bf t}_2 = (u_1u_2+v_1v_2)a^2+w_1w_2c^2, \eqno (1.1.3.4d)] [{\bf r}^*_1\cdot{\bf r}^*_2 = (h_1h_2+k_1k_2)a^{*2}+l_1l_2c^{*2}. \eqno (1.1.3.7d)]

Table 1.2.4.1| top | pdf |
Assignment of integers [s\le 100] to pairs h, k with [s=h^2+k^2]

Each pair h, k represents all eight pairs which result from permutation and different sign combinations.

shkshkshk
11032446882
21134537266
42036607383
52137617475
82240628084
93041548190
103145638291
133249708592
1640507176
1741558985
183352649093
204253729794
255058739877
436165100100
2651648086
29526581 
 74

1.2.5. Trigonal and hexagonal crystal system

| top | pdf |

1.2.5.1. Description referred to hexagonal axes

| top | pdf |

Metrical conditions: a = b; c arbitrary; α = β = 90°; γ = 120°

Bravais lattice types: hP, hR

Symmetry of lattice points: 6/mmm (hP), [\bar3m ] (hR)

Simplified formulae: [V=({\bf abc}) =\left [\left| \matrix{a^{2} &-{1\over2} a^{2} &0 \cr -{1\over2}a^{2} &a^2 &0 \cr 0&0&c^2} \right| \right]^{1/2} =\textstyle{1\over2}{\sqrt3} \,\, a^2c, \eqno (1.1.1.1e)] [\left. \eqalign{ a^*&=b^*={\textstyle{2\over3}}\sqrt3 {1\over a}, \quad c^*={1\over c}, \cr \alpha^*&=\beta^*=90^\circ, \quad \gamma^*=60^\circ,} \right\} \eqno (1.1.1.3e)] [\eqalignno{\qquad V^*& =({\bf a}^*{\bf b}^*{\bf c}^*)=\left[\left| \matrix{ a^{*2}&{1\over2}a^{*2}&0 \cr {1\over2}a^{*2}&a^{*2}&0 \cr 0&0&c^{*2}}\right|\right]^{1/2} \cr &=\textstyle{1\over2}\sqrt3\; a^{*2}c^*={2\over3}\sqrt3\; a^{-2}c^{-1}, &(1.1.1.4e)}] [a=b={\textstyle{2\over3}}\sqrt3{1\over a^*}, \quad c={1\over c^*}, \quad \alpha=\beta=90^\circ, \quad \gamma=120^\circ, \eqno (1.1.1.7e)] [t^2=(u^2+v^2-uv)a^2+w^2c^2, \eqno (1.1.2.1e)] [r^{*2}=(h^2+k^2+hk)a^{*2}+l ^2c^{*2}=sa^{*2}+l^2c^{*2} \eqno (1.1.2.2e)]with [s=h^2+k^2+hk.]For each value of [s\le100], all corresponding pairs h, k are listed in Table 1.2.5.1[link]. [{2u-v\over 2h}={2v-u\over 2k}={c^2w\over a^2l}, \eqno (1.1.2.12e)] [{\bf t}_1\cdot{\bf t}_2=(u_1u_2+v_1v_2- \textstyle{1\over2}u_1v_2-{1\over2}u_2v_1)a^2+w_1w_2c^2, \eqno (1.1.3.4e)] [{\bf r}^*_1\cdot{\bf r}^*_2=(h_1h_2+k_1k_2+ \textstyle{1\over2}h_1k_2+ {1\over2}h_2k_1)a^{*2}+ l_1l_2c^{*2}. \eqno (1.1.3.7e)]

Table 1.2.5.1| top | pdf |
Assignment of integers [s\le100] to pairs h, k with [s=h^2+k^2+hk]

Each pair h, k represents in addition the pairs k, −hk and −hk, h, the permutations of these three, and the six corresponding centrosymmetrical pairs.

shkshkshk
11031516772
31136607381
42037437555
72139527664
93043617973
122248448190
133149708482
1640539191
1932526265
214157719374
255061549783
27336363100100
28426480 

1.2.5.2. Description referred to rhombohedral axes

| top | pdf |

Metrical conditions: a = b = c; α = β = γ

Bravais lattice type: hR

Symmetry of lattice points: [\bar3m]

Simplified formulae: [\eqalignno{\qquad\quad V&=({\bf abc})= \left[\left| \matrix{ a^2&a^2\cos\alpha&a^2\cos\alpha \cr a^2\cos\alpha&a^2&a^2\cos\alpha \cr a^2\cos\alpha&a^2\cos\alpha&a^2}\right|\right]^{1/2} \cr &=a^3[1 - 3\cos^2\alpha+2\cos^3\alpha]^{1/2} \cr &=2a^3\bigg[\sin {\textstyle{3\over2}}\, \alpha\sin^3 {\alpha\over2}\, \bigg]^{1/2}, & (1.1.1.1f)}] [\left. \eqalign{ &\cos{\alpha^*\over2}=\cos{\beta^*\over2}=\cos{\gamma^*\over2}={1\over2\cos\alpha/2}, \cr &a^*=b^*=c^*={1\over a\sin\alpha\sin\alpha^*},}\right\} \eqno (1.1.1.3f)] [\eqalignno{\qquad\quad V^*&=({\bf a}^*{\bf b}^*{\bf c}^*) \cr &=\left[\left| \matrix{ a^{*2}&a^{*2}\cos\alpha^*&a^{*2}\cos\alpha^* \cr a^{*2}\cos\alpha^*&a^{*2}&a^{*2}\cos\alpha^* \cr a^{*2}\cos\alpha^*&a^{*2}\cos\alpha^*&a^{*2}}\right|\right]^{1/2} \cr &=a^{*3}[1 - 3\cos^2\alpha^*+2\cos^3\alpha^*]^{1/2} \cr &=2a^{*3}\bigg[\sin \textstyle{3\over2}\alpha^*\sin^3\displaystyle{\alpha^*\over2}\bigg]^{1/2}, & (1.1.1.4f)}] [\left. \eqalign{ &\cos{\alpha\over2}= \cos{\beta\over2}= \cos{\gamma\over2}= {1\over2\cos\alpha^*/2}, \cr &a=b=c={1\over a^*\sin\alpha^*\sin\alpha},}\right\} \eqno (1.1.1.7f)] [t^2=(u^2+v^2+w^2)a^2+2(uv+uw+vw)a^2\cos\alpha, \eqno (1.1.2.1f)] [\eqalignno{\quad\qquad r^{*2}&=(h^2+k^2+l^2)a^{*2}+2(hk+hl+kl)a^{*2}\cos\alpha^* \cr &=s_1a^{*2}+2s_2a^{*2}\cos\alpha^* & (1.1.2.2f)}]with [s_1=h^2+k^2+l ^2 \quad {\rm and} \quad s_2=hk+hl+kl.]For each value of [s_1\le50], all corresponding values of [s_2] and all triplets h, k, l are listed in Table 1.2.5.2[link]. [{u\over h}+{v+w\over h}\cos\alpha={v\over k}+{u+w\over k}\cos\alpha={w\over l}+{u+v\over l}\cos\alpha, \eqno (1.1.2.12f)] [\eqalignno{ {\bf t}_1\cdot{\bf t}_2 &=(u_1u_2+v_1v_2+w_1w_2)a^2 \cr &\quad +(u_1v_2+u_2v_1+u_1w_2+u_2w_1 \cr &\quad +v_1w_2+v_2w_1)a^2\cos\alpha, &(1.1.3.4f)}] [\eqalignno{ {\bf r}^*_1 \cdot{\bf r}^*_2& =(h_1h_2+k_1k_2+l_1l_2)a^{*2} \cr &\quad +(h_1k_2+h_2k_1+h_1l_2+h_2l_1 \cr &\quad +k_1l_2+k_2l_1)a^{*2}\cos\alpha^*. &(1.1.3.7f)}]

Table 1.2.5.2| top | pdf |
Assignment of integers [s_1\le50] to triplets h, k, l with [s_1 = h^2 +k^2 =l^2] and to integers [s_2=hk+hl+kl]

Each triplet h, k, l represents all twelve triplets resulting from permutation and/or simultaneous change of all signs.

s1s2hkls1s2hkls1s2hkl
1010024−12−42238−19−532
2−1−110−44−22−11−611
111020422 5−32
3−1−11125−12−430−16−11
31110500 53−2
402001243013611
5−2−21026−13−43131532
2210−114−3140−12−620
6−3−211−5−51012620
−12−11551041−20−540
5211 43−1−16−621
8−4−22019431 −443
 422027−9−511−86−21
9−4−221 −333 44−3
0300−15−11462−1
 22−11151120621
822127333 540
10−3−31029−14−43240443
3310−10−52042−21−541
11−5−311 4−32−195−41
−13−11−243−21154−1
73111052029541
12−4−2222643243−21−533
1222230−13−521−95−33
13−6−320−75−2139533
6320352−144−20−622
14−7−32117521−46−22
−53−2132−16−44028622
132−11644045−22−542
1132133−16−522−18−630
160400 −441 5−42
17−8−322−45−22254−2
−4−410844−118630
 3−222452238542
4410 44146−21−631
1632234−15−530−156−31
18−9−330 −433963−1
−7−411−94−3327631
−14−111553048−16−444
94113343348444
 33035−17−53149−24−632
19−9−331−135−31−126−32
333−1753−10700
1533123531 63−2
20−8−42036−16−44236632
8420060050−25−550
21−10−421 44−2−23−543
−64−2132442−175−43
242−137−6−610−7−710
144216610 54−3
22−9−332    7710
−333−2    25550
21332    47543

1.2.6. Cubic crystal system

| top | pdf |

Metrical conditions: a = b = c; α = β = γ = 90°

Bravais lattice types: cP, cI, cF

Symmetry of lattice points: [m\bar3m]

Simplified formulae: [V=({\bf abc})=\left[\left| \matrix{ a^2&0&0 \cr0&a^2&0 \cr 0&0&a^2} \right|\right]^{1/2}=a^3, \eqno (1.1.1.1g)] [a^*=b^*=c^*={1\over a}, \quad \alpha^*=\beta^*=\gamma^*=90^\circ, \eqno (1.1.1.3g)] [V^*=({\bf a}^*{\bf b}^*{\bf c}^*)=\left[\left| \matrix{ a^{*2}&0&0 \cr 0&a^{*2}&0 \cr 0&0&a^{*2}}\right|\right]^{1/2}=a^{*3}=a^{-3}, \eqno (1.1.1.4g)] [a=b=c={1\over a^*}, \quad \alpha=\beta=\gamma=90^\circ, \eqno (1.1.1.7g)] [t^2=(u^2+v^2+w^2)a^2, \eqno (1.1.2.1g)] [r^{*2}=(h^2+k^2+l ^2)a^{*2}=sa^{*2} \eqno (1.1.2.2g)]with [s=h^2+k^2+l ^2.]For each value of [s\le100], all corresponding triplets h, k, l are listed in Table 1.2.6.1[link]. [{u\over h}={v\over k}={w\over l}, \eqno (1.1.2.12g)] [{\bf t}_1\cdot {\bf t}_2=(u_1u_2+v_1v_2+w_1w_2)a^2, \eqno (1.1.3.4g)] [{\bf r}^*_1\cdot{\bf r}^*_2=(h_1h_2+k_1k_2+l_1l_2)a^{*2}. \eqno (1.1.3.7g)]

Table 1.2.6.1| top | pdf |
Assignment of integers [s\le 100] to triplets h, k, l with [s=h^2+k^2+l^2]

Each triplet represents all 48 triplets resulting from permutations and sign combinations.

shk lshk lshk lshk lshk lshk l
11002550042541597317483188664
21104304353355375089922
3111265104462261650743850
42004314563064375751843
52102751154262732555762
6211333466316517666290930
822029520484446480077832851
93004324970065810654754
221305216327407875291931
1031032440507106528084093852
1131133522550668118190094932
12222441543741841763
13320345305171155474496844
143214335516773366397940
1640035531526406882082910665
17410366005372064483398941
3224426416982183911853
184113761054721742753770
33038611633706538484299933
193315325527282285920771
204204062056642660760755
214214162157722738308692110010 00
22332540544661761860
244224 4 358730   655   

References

First citation International Tables for Crystallography (2005). Vol. A, Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.Google Scholar








































to end of page
to top of page