International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.2, pp. 253-258

Section 4.2.6.3.3.4. Towards a tensor formalism

D. C. Creaghb

4.2.6.3.3.4. Towards a tensor formalism

| top | pdf |

The question of how best to describe the interaction of X-rays with crystalline materials is quite difficult to answer. In the form factor formalism, the atoms are supposed to scatter as though they are isolated atoms situated at fixed positions in the unit cell. In the vast majority of cases, the polarization on scattering is not detected, and only the scattered intensities are measured. From the scattered intensities, the distribution of the electron density within the unit cell is calculated, and the difference between the form-factor model and that calculated from the intensities is taken as a measure of the nature and location of chemical bonds between atoms in the unit cell. This is the zeroth-order approximation to a solution, but it is in fact the only way crystal structures are solved ab initio.

The existence of chemical bonding imposes additional restrictions on the symmetry of lattices, and, if the associated influence this has on the complexity of energy levels is taken into account, significant changes in the scattering factors may occur in the neighbourhood of the absorption edges of the atoms comprising the crystal structure. The magnitudes of the dispersion corrections are sensitive to the chemical state, particularly oxidation state, and phenomena similar to those observed in the XAFS case (Section 4.2.4[link]) are observed.

The XAFS interaction arising from the presence of neighbouring atoms is proportional to [f''(\omega,0)] and therefore is related to [f'(\omega,0)] through the Kramers–Kronig integral. It is not surprising that these modulations are observed in diffracted intensities in those X-ray diffraction experiments where the photon energy is scanned through the absorption edge of an atomic species in the crystal lattice. Studies of this type are referred to as diffraction absorption fine structure (DAFS) experiments. A recent review of work performed using counter techniques has been given by Sorenson (1994[link]). Creagh & Cookson (1995[link]) have described the use of imaging-plate techniques to study the structure and site symmetry using the DAFS technique. This technique has the ability to discriminate between different lattice sites in the unit cell occupied by an atomic species. XAFS cannot make this discrimination. The DAFS modulations are small perturbations to the diffracted intensities. They are, however, significantly larger than the tensor effects described in the following paragraphs.

In the case where the excited state lacks high symmetry and is oriented by crystal bonding, the scattering can no longer be described by a scalar scattering factor but must be described by a symmetric second-rank tensor. The consequences of this have been described by Templeton (1994[link]). It follows therefore that material media can be optically active in the X-ray region. Hart (1994[link]) has used his unique polarizing X-ray optical devices to study, for example, Faraday rotation in such materials as iron, in the region of the iron K-absorption edge, and cobalt(III) bromide monohydrate in the region of the cobalt K-absorption edge.

The theory of anisotropy in anomalous scattering has been treated extensively by Kirfel (1994[link]), and Morgenroth, Kirfel & Fischer (1994[link]) have extended this to the description of kinematic diffraction intensities in lattices containing anisotropic anomalous scatterers. Their treatment was developed for space groups up to orthorhombic symmetry.

All the preceding treatments apply to scattering in the neighbourhood of an absorption edge, and to a fairly restricted class of crystals for which the local site symmetry of the electron density of states in the excited state is very different from the apparent crystal symmetry.

These approaches seek to treat the scattering from the crystal as though the scattering from each atomic position can be described by a symmetric second-rank tensor whose properties are determined by the point-group symmetries of those sites. Clearly, this procedure cannot be followed unless the structure has been solved by the usual method. The tensor approach can then be used to explain apparent deficiencies in that model such as the existence of `forbidden' reflections, birefringence, and circular dichroism.

Scattering of X-rays from the electron spins in anti-ferromagnetically ordered materials can also be described by imposing a tensor description on the form factor (Blume, 1994[link]). The tensor in this case is a fourth-rank tensor, and the strength of the interaction, even for the favourable case of resonance scattering, is several orders of magnitude lower in intensity than the polarization effects. Nevertheless, studies have been made on holmium and uranium arsenide, and significant magnetic Bragg scattering has been observed.

All the cases cited above represent exciting, state-of-the-art, scientific studies. However, none of the work will assist in the solution of crystal structures directly. Researchers should avoid the temptation, in the first instance, to ascribe anything but a scalar value to the form factor.

References

First citation Blume, M. (1994). Magnetic effects in anomalous dispersion. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 495–512. Amsterdam: North Holland.Google Scholar
First citation Creagh, D. C. & Cookson, D. J. (1995). Diffraction anomalous fine structure study of basic zinc sulphate and basic zinc sulphonate. In Photon Factory Activity Report 1994, edited by K. Nasu. National Laboratory for High Energy Physics, Tsukuba 93-0305, Japan.Google Scholar
First citation Hart, M. (1994). Polarizing X-ray optics and anomalous dispersion in chiral systems. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 103–118. Amsterdam: North Holland.Google Scholar
First citation Kirfel, A. (1994). Anisotropy of anomalous scattering in single crystals. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 231–256. Amsterdam: North Holland.Google Scholar
First citation Morgenroth, W., Kirfel, A. & Fischer, K. (1994). Computing kinematic diffraction intensities with anomalous scatterers – `forbidden' axial reflections in space groups up to orthorhombic symmetry. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 257–264. Amsterdam: North Holland.Google Scholar
First citation Sorenson, L. B., Cross, J. O., Newville, M., Ravel, B., Rehr, J. J., Stragier, H., Bouldin, C. E. & Woicik, J. C. (1994). Diffraction anomalous fine structure: unifying X-ray diffraction and X-ray absorption with DAFS. In Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 389–420. Amsterdam: North Holland.Google Scholar
First citation Templeton, D. H. (1994). X-ray resonance, then and now. In Resonant anomalous X-ray scattering: theory and applications, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 1–7. Amsterdam: North Holland.Google Scholar








































to end of page
to top of page