International Tables for Crystallography (2006). Vol. C. ch. 4.2, pp. 191-258
https://doi.org/10.1107/97809553602060000592

Chapter 4.2. X-rays

Contents

  • 4.2. X-rays  (pp. 191-258) | html | pdf | chapter contents |
    • 4.2.1. Generation of X-rays  (pp. 191-200) | html | pdf |
      • 4.2.1.1. The characteristic line spectrum  (pp. 191-192) | html | pdf |
        • 4.2.1.1.1. The intensity of characteristic lines  (pp. 191-192) | html | pdf |
      • 4.2.1.2. The continuous spectrum  (pp. 192-193) | html | pdf |
      • 4.2.1.3. X-ray tubes  (pp. 193-195) | html | pdf |
        • 4.2.1.3.1. Power dissipation in the anode  (p. 195) | html | pdf |
      • 4.2.1.4. Radioactive X-ray sources  (pp. 195-196) | html | pdf |
      • 4.2.1.5. Synchrotron-radiation sources  (pp. 196-198) | html | pdf |
      • 4.2.1.6. Plasma X-ray sources  (pp. 198-199) | html | pdf |
      • 4.2.1.7. Other sources of X-rays  (pp. 199-200) | html | pdf |
    • 4.2.2. X-ray wavelengths  (pp. 200-212) | html | pdf |
      • 4.2.2.1. Historical introduction  (pp. 200-201) | html | pdf |
      • 4.2.2.2. Known problems  (p. 201) | html | pdf |
      • 4.2.2.3. Alternative strategies  (p. 201) | html | pdf |
      • 4.2.2.4. The X-ray wavelength scales, old and new  (pp. 201-202) | html | pdf |
      • 4.2.2.5. K-series reference wavelengths  (p. 202) | html | pdf |
      • 4.2.2.6. L-series reference wavelengths  (p. 202) | html | pdf |
      • 4.2.2.7. Absorption-edge locations  (pp. 202-204) | html | pdf |
      • 4.2.2.8. Outline of the theoretical procedures  (pp. 204-205) | html | pdf |
      • 4.2.2.9. Evaluation of the uncorrelated energy with the Dirac–Fock method  (p. 205) | html | pdf |
      • 4.2.2.10. Correlation and Auger shifts  (p. 205) | html | pdf |
      • 4.2.2.11. QED corrections  (pp. 205-208) | html | pdf |
      • 4.2.2.12. Structure and format of the summary tables  (pp. 211-212) | html | pdf |
      • 4.2.2.13. Availability of a more complete X-ray wavelength table  (p. 212) | html | pdf |
      • 4.2.2.14. Connection with scales used in previous literature  (p. 212) | html | pdf |
    • 4.2.3. X-ray absorption spectra  (pp. 213-220) | html | pdf |
      • 4.2.3.1. Introduction  (pp. 213-214) | html | pdf |
        • 4.2.3.1.1. Definitions  (p. 213) | html | pdf |
        • 4.2.3.1.2. Variation of X-ray attenuation coefficients with photon energy  (p. 213) | html | pdf |
        • 4.2.3.1.3. Normal attenuation, XAFS, and XANES  (pp. 213-214) | html | pdf |
      • 4.2.3.2. Techniques for the measurement of X-ray attenuation coefficients  (pp. 214-215) | html | pdf |
        • 4.2.3.2.1. Experimental configurations  (pp. 214-215) | html | pdf |
        • 4.2.3.2.2. Specimen selection  (p. 215) | html | pdf |
        • 4.2.3.2.3. Requirements for the absolute measurement of μl or (μ/ρ)  (p. 215) | html | pdf |
      • 4.2.3.3. Normal attenuation coefficients  (p. 215) | html | pdf |
      • 4.2.3.4. Attenuation coefficients in the neighbourhood of an absorption edge  (pp. 216-219) | html | pdf |
        • 4.2.3.4.1. XAFS  (pp. 216-219) | html | pdf |
          • 4.2.3.4.1.1. Theory  (pp. 216-217) | html | pdf |
          • 4.2.3.4.1.2. Techniques of data analysis  (pp. 217-218) | html | pdf |
          • 4.2.3.4.1.3. XAFS experiments  (pp. 218-219) | html | pdf |
        • 4.2.3.4.2. X-ray absorption near edge structure (XANES)  (p. 219) | html | pdf |
      • 4.2.3.5. Comments  (p. 220) | html | pdf |
    • 4.2.4. X-ray absorption (or attenuation) coefficients  (pp. 220-229) | html | pdf |
      • 4.2.4.1. Introduction  (pp. 220-221) | html | pdf |
      • 4.2.4.2. Sources of information  (pp. 221-229) | html | pdf |
        • 4.2.4.2.1. Theoretical photo-effect data: σpe  (p. 221) | html | pdf |
        • 4.2.4.2.2. Theoretical Rayleigh scattering data: σR  (pp. 221-229) | html | pdf |
        • 4.2.4.2.3. Theoretical Compton scattering data: σC  (p. 229) | html | pdf |
      • 4.2.4.3. Comparison between theoretical and experimental data sets  (p. 229) | html | pdf |
      • 4.2.4.4. Uncertainty in the data tables  (p. 229) | html | pdf |
    • 4.2.5. Filters and monochromators  (pp. 229-241) | html | pdf |
      • 4.2.5.1. Introduction  (pp. 229-236) | html | pdf |
      • 4.2.5.2. Mirrors and capillaries  (pp. 236-238) | html | pdf |
        • 4.2.5.2.1. Mirrors  (pp. 236-237) | html | pdf |
        • 4.2.5.2.2. Capillaries  (p. 237) | html | pdf |
        • 4.2.5.2.3. Quasi-Bragg reflectors  (pp. 237-238) | html | pdf |
      • 4.2.5.3. Filters  (p. 238) | html | pdf |
      • 4.2.5.4. Monochromators  (pp. 238-241) | html | pdf |
        • 4.2.5.4.1. Crystal monochromators  (pp. 238-239) | html | pdf |
        • 4.2.5.4.2. Laboratory monochromator systems  (p. 239) | html | pdf |
        • 4.2.5.4.3. Multiple-reflection monochromators for use with laboratory and synchrotron-radiation sources  (pp. 239-240) | html | pdf |
        • 4.2.5.4.4. Polarization  (pp. 240-241) | html | pdf |
    • 4.2.6. X-ray dispersion corrections  (pp. 241-258) | html | pdf |
      • 4.2.6.1. Definitions  (pp. 242-243) | html | pdf |
        • 4.2.6.1.1. Rayleigh scattering  (p. 242) | html | pdf |
        • 4.2.6.1.2. Thomson scattering by a free electron  (p. 242) | html | pdf |
        • 4.2.6.1.3. Elastic scattering from electrons bound to atoms: the atomic scattering factor, the atomic form factor, and the dispersion corrections  (pp. 242-243) | html | pdf |
      • 4.2.6.2. Theoretical approaches for the calculation of the dispersion corrections  (pp. 243-248) | html | pdf |
        • 4.2.6.2.1. The classical approach  (pp. 243-244) | html | pdf |
        • 4.2.6.2.2. Non-relativistic theories  (pp. 244-245) | html | pdf |
        • 4.2.6.2.3. Relativistic theories  (pp. 245-248) | html | pdf |
          • 4.2.6.2.3.1. Cromer and Liberman: relativistic dipole approach  (pp. 245-246) | html | pdf |
          • 4.2.6.2.3.2. The scattering matrix formalism  (pp. 246-248) | html | pdf |
        • 4.2.6.2.4. Intercomparison of theories  (p. 248) | html | pdf |
      • 4.2.6.3. Modern experimental techniques  (pp. 248-258) | html | pdf |
        • 4.2.6.3.1. Determination of the real part of the dispersion correction: [f'(\omega,0)]  (pp. 248-250) | html | pdf |
        • 4.2.6.3.2. Determination of the real part of the dispersion correction: [f'(\omega,{\boldDelta})]  (pp. 250-251) | html | pdf |
          • 4.2.6.3.2.1. Measurements using the dynamical theory of X-ray diffraction  (pp. 250-251) | html | pdf |
          • 4.2.6.3.2.2. Friedel- and Bijvoet-pair techniques  (p. 251) | html | pdf |
        • 4.2.6.3.3. Comparison of theory with experiment  (pp. 251-258) | html | pdf |
          • 4.2.6.3.3.1. Measurements in the high-energy limit [(\omega/\omega_\kappa\rightarrow0)]  (pp. 251-252) | html | pdf |
          • 4.2.6.3.3.2. Measurements in the vicinity of an absorption edge  (pp. 252-253) | html | pdf |
          • 4.2.6.3.3.3. Accuracy in the tables of dispersion corrections  (p. 253) | html | pdf |
          • 4.2.6.3.3.4. Towards a tensor formalism  (pp. 253-258) | html | pdf |
          • 4.2.6.3.3.5. Summary  (p. 258) | html | pdf |
      • 4.2.6.4. Table of wavelengths, energies, and linewidths used in compiling the tables of the dispersion corrections  (p. 258) | html | pdf |
      • 4.2.6.5. Tables of the dispersion corrections for forward scattering, averaged polarization using the relativistic multipole approach  (p. 258) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.2.1.1. f(χ) curves for Cu K-L3 at a series of different accelerating voltages (in kV)  (p. 192) | html | pdf |
      • Fig. 4.2.1.2. Experimental measurements of [N_\varphi] for Cu K-L3 as functions of the accelerating voltage for different take-off angles  (p. 193) | html | pdf |
      • Fig. 4.2.1.3. Intensity per unit frequency interval versus frequency in the continuous spectrum from a thick target at different accelerating voltages  (p. 193) | html | pdf |
      • Fig. 4.2.1.4. The function μ in Müller's equation (equation 4.2.1.12) as a function of the ratio of width to length of the focal spot  (p. 195) | html | pdf |
      • Fig. 4.2.1.5. Synchrotron radiation emitted by a relativistic electron travelling in a curved trajectory  (p. 197) | html | pdf |
      • Fig. 4.2.1.6. Synchrotron-radiation spectrum: percentage per unit wavelength interval (a) of power of total power and (b) of number of photons of total number of photons at wavelengths greater than λ versus λ/λc  (p. 197) | html | pdf |
      • Fig. 4.2.1.7. Main components of a dedicated electron storage-ring synchrotron-radiation source  (p. 198) | html | pdf |
      • Fig. 4.2.1.8. Electron trajectory within a multipole wiggler or undulator  (p. 198) | html | pdf |
      • Fig. 4.2.1.9. Spectral distribution and critical wavelengths for (a) a dipole magnet, (b) a wavelength shifter, and (c) a multipole wiggler for the proposed ESRF  (p. 198) | html | pdf |
      • Fig. 4.2.1.10. Comparison of the spectra from the storage ring SPEAR in photons s−1 mA−1 mrad−1 per 1% passband (1978 performance) and a rotating-anode X-ray generator  (p. 198) | html | pdf |
      • Fig. 4.2.1.11. The evolution of storage-ring synchrotron-radiation sources over the decades, as illustrated by their increasing number and range of machine energies (based on Suller, 1992)  (p. 200) | html | pdf |
      • Fig. 4.2.1.12. X-ray emission from various laser-produced plasmas  (p. 200) | html | pdf |
      • Fig. 4.2.2.1. Relative deviations between theoretical and experimental results for K-series spectra  (p. 212) | html | pdf |
      • Fig. 4.2.2.2. Comparison of L-series data with experiment for the indicated range of Z  (p. 212) | html | pdf |
      • Fig. 4.2.3.1. Theoretical cross sections for photon interactions with carbon showing the contributions of photoelectric, elastic (Rayleigh), inelastic (Compton), and pair-production cross sections to the total cross sections  (p. 213) | html | pdf |
      • Fig. 4.2.3.2. The dependence of the X-ray attenuation coefficient on energy for a range of germanium compounds, taken in the neighbourhood of the germanium absorption edge (from IT IV, 1974)  (p. 214) | html | pdf |
      • Fig. 4.2.3.3. Schematic representations of experimental apparatus used in the IUCr X-ray Attenuation Project (Creagh & Hubbell, 1987; Creagh, 1985)  (p. 214) | html | pdf |
      • Fig. 4.2.3.4. Steps in the reduction of data from an XAFS experiment using the Fourier transform technique: (a) after the removal of background χ(k) versus k; (b) after multiplication by a weighting function (in this case k3); (c) after Fourier transformation to determine r′  (p. 217) | html | pdf |
      • Fig. 4.2.3.5. Schematic representations of the scattering processes undergone by the ejected photoelectron in the single-scattering (XAFS) case and the full multiple-scattering regime (XANES)  (p. 219) | html | pdf |
      • Fig. 4.2.4.1. Agreement between theory and experiment for oxygen (Z = 8) in the `soft' X-ray region  (p. 220) | html | pdf |
      • Fig. 4.2.4.2. The total cross section for silicon (Z = 14) compared with the unrenormalized Scofield values  (p. 221) | html | pdf |
      • Fig. 4.2.4.3. The total cross section for uranium (Z = 92): The theoretical values (solid line) are partially obscured by the high density of available measurements  (p. 222) | html | pdf |
      • Fig. 4.2.4.4. Comparison between this tabulation and experimental data contained in Saloman & Hubbell (1986)  (p. 222) | html | pdf |
      • Fig. 4.2.5.1. The variation of specular reflectivity with incident photon energy is shown for materials of different atomic number and a constant angle of incidence of 0.2°  (p. 236) | html | pdf |
      • Fig. 4.2.5.2. The use of mirrors in a typical synchrotron-radiation beamline  (p. 237) | html | pdf |
      • Fig. 4.2.5.3. The reflectivity of a multiple-quantum-well device is shown  (p. 238) | html | pdf |
      • Fig. 4.2.5.4. In (a), the schematic rocking curve for a silicon crystal in the neighbourhood of the 111 Bragg peak is shown  (p. 239) | html | pdf |
      • Fig. 4.2.5.5. A schematic diagram of a beamline designed to produce circularly polarized light from initially linearly polarized light using Laue-case reflections  (p. 240) | html | pdf |
      • Fig. 4.2.5.6. A schematic diagram of a Hart-type tuneable channel-cut monochromator is shown  (p. 241) | html | pdf |
      • Fig. 4.2.5.7. A schematic diagram of the use of a Bragg–Fresnel lens to focus hard X-rays onto a high-pressure cell  (p. 241) | html | pdf |
      • Fig. 4.2.6.1. The relativistic correction in electrons per atom for: (a) the modified form-factor approach; (b) the relativistic multipole approach; (c) the relativistic dipole approach  (p. 247) | html | pdf |
      • Fig. 4.2.6.2. Measured values of f′(ω, 0) at the K-edge of Nb in LiNbO3 and the Kramers–Kronig transformation of f′′(ω, 0)  (p. 247) | html | pdf |
    • Tables
      • Table 4.2.1.1. Correspondence between X-ray diagram levels and electron configurations  (p. 191) | html | pdf |
      • Table 4.2.1.2. Correspondence between IUPAC and Siegbahn notations for X-ray diagram lines  (p. 191) | html | pdf |
      • Table 4.2.1.3. Copper-target X-ray tubes and their loading  (p. 194) | html | pdf |
      • Table 4.2.1.4. Relative permissible loading for different target materials  (p. 196) | html | pdf |
      • Table 4.2.1.5. Radionuclides decaying wholly by electron capture, and yielding little or no γ-radiation  (p. 196) | html | pdf |
      • Table 4.2.1.6. Comparison of storage-ring synchrotron-radiation sources  (p. 199) | html | pdf |
      • Table 4.2.1.7. Intensity gain with storage rings over conventional sources  (p. 200) | html | pdf |
      • Table 4.2.2.1. K-series reference wavelengths in Å  (p. 203) | html | pdf |
      • Table 4.2.2.2. Directly measured L-series reference wavelengths in Å  (p. 204) | html | pdf |
      • Table 4.2.2.3. Directly measured and emission + binding energies (see text) K-absorption edges in Å  (p. 205) | html | pdf |
      • Table 4.2.2.4. Wavelengths of K-emission lines and K-absorption edges in Å  (pp. 206-208) | html | pdf |
      • Table 4.2.2.5. Wavelengths of L-emission lines and L-absorption edges in Å  (pp. 209-211) | html | pdf |
      • Table 4.2.2.6. Wavelength conversion factors  (p. 212) | html | pdf |
      • Table 4.2.3.1. Some synchrotron-radiation facilities providing XAFS databases and analysis utilities  (p. 219) | html | pdf |
      • Table 4.2.4.1. Table of wavelengths and energies for the characteristic radiations used in Tables 4.2.4.2 and 4.2.4.3  (p. 221) | html | pdf |
      • Table 4.2.4.2. Total phonon interaction cross section  (pp. 223-229) | html | pdf |
      • Table 4.2.4.3. Mass attenuation coefficients  (pp. 230-236) | html | pdf |
      • Table 4.2.6.1. Values of Etot/mc2 listed as a function of atomic number Z  (p. 246) | html | pdf |
      • Table 4.2.6.2. Comparison between the S-matrix calculations of Kissel (K) (1977) and the form-factor calculations of Cromer & Liberman (C & L) (1970, 1981, 1983) and Creagh & McAuley (C & M) for the noble gases and several common metals  (p. 249) | html | pdf |
      • Table 4.2.6.3. A comparison of the forward-scattering amplitudes computed using different theoretical approaches  (p. 250) | html | pdf |
      • Table 4.2.6.4. Comparison of measurements of the real part of the dispersion correction for LiF, Si, Al and Ge for characteristic wavelengths Ag Kα1, Mo Kα1 and Cu Kα1 with theoretical predictions  (p. 252) | html | pdf |
      • Table 4.2.6.5. Comparison of measurements of f′(ω, 0) for C, Si and Cu for characteristic wavelengths Ag Kα1, Mo Kα1 and Cu Kα1 with theoretical predictions  (p. 253) | html | pdf |
      • Table 4.2.6.6. Comparison of [f'(\omega_A,0)] for copper, nickel, zirconium, and niobium for theoretical and experimental data sets  (p. 254) | html | pdf |
      • Table 4.2.6.7. Lists of wavelengths, energies, and linewidths used in compiling the table of dispersion corrections  (p. 254) | html | pdf |
      • Table 4.2.6.8. Dispersion corrections for forward scattering  (pp. 255-257) | html | pdf |