International Tables for Crystallography (2006). Vol. C. ch. 4.4, pp. 430-487
https://doi.org/10.1107/97809553602060000594 |
Chapter 4.4. Neutron techniques
Contents
- 4.4. Neutron techniques (pp. 430-487) | html | pdf | chapter contents |
- 4.4.1. Production of neutrons (pp. 430-431) | html | pdf |
- 4.4.2. Beam-definition devices (pp. 431-443) | html | pdf |
- 4.4.2.1. Introduction (p. 431) | html | pdf |
- 4.4.2.2. Collimators (pp. 431-432) | html | pdf |
- 4.4.2.3. Crystal monochromators (pp. 432-435) | html | pdf |
- 4.4.2.4. Mirror reflection devices (pp. 435-438) | html | pdf |
- 4.4.2.5. Filters (p. 438) | html | pdf |
- 4.4.2.6. Polarizers (pp. 438-442) | html | pdf |
- 4.4.2.7. Spin-orientation devices (pp. 442-443) | html | pdf |
- 4.4.2.8. Mechanical choppers and selectors (p. 443) | html | pdf |
- 4.4.3. Resolution functions (pp. 443-444) | html | pdf |
- 4.4.4. Scattering lengths for neutrons (pp. 444-454) | html | pdf |
- 4.4.4.1. Scattering lengths (p. 444) | html | pdf |
- 4.4.4.2. Scattering and absorption cross sections (p. 452) | html | pdf |
- 4.4.4.3. Isotope effects (pp. 452-453) | html | pdf |
- 4.4.4.4. Correction for electromagnetic interactions (p. 453) | html | pdf |
- 4.4.4.5. Measurement of scattering lengths (p. 453) | html | pdf |
- 4.4.4.6. Compilation of scattering lengths and cross sections (pp. 453-454) | html | pdf |
- 4.4.5. Magnetic form factors (pp. 454-461) | html | pdf |
- 4.4.6. Absorption coefficients for neutrons (p. 461) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 4.4.1.1. A plane view of the installation at the Institut Laue–Langevin, Grenoble (p. 430) | html | pdf |
- Fig. 4.4.1.2. Schematic diagram for performing diffraction experiments at steady-state and pulsed neutron sources (p. 431) | html | pdf |
- Fig. 4.4.2.1. Two methods by which artificial mosaic monochromators can be constructed: (a) out of a stack of crystalline wafers, each with a mosaicity close to the global value (p. 434) | html | pdf |
- Fig. 4.4.2.2. Reciprocal-lattice representation of the effect of a monochromator with reciprocal-lattice vector τ on the reciprocal-space element of a beam with divergence α (p. 434) | html | pdf |
- Fig. 4.4.2.3. Momentum-space representation of Bragg scattering from a crystal moving (a) perpendicular and (b) parallel to the diffracting planes with a velocity vk (p. 435) | html | pdf |
- Fig. 4.4.2.4. In a curved neutron guide, the transmission becomes λ dependent: (a) the possible types of reflection (garland and zig-zag), the direct line-of-sight length, the critical angle θ*, which is related to the characteristic wavelength ; (b) transmission across the exit of the guide for different wavelengths, normalized to unity at the outside edge; (c) total transmission of the guide as a function of λ (p. 436) | html | pdf |
- Fig. 4.4.2.5. Illustration of how a variation in the bilayer period can be used to produce a monochromator, a broad-band device, or a supermirror (p. 437) | html | pdf |
- Fig. 4.4.2.6. Typical applications of polycapillary devices: (a) lens used to refocus a divergent beam; (b) half-lens to produce a nearly parallel beam or to focus a nearly parallel beam; (c) a compact bender (p. 437) | html | pdf |
- Fig. 4.4.2.7. Total cross section for beryllium in the energy range where it can be used as a filter for neutrons with energy below 5 meV (Freund, 1983) (p. 438) | html | pdf |
- Fig. 4.4.2.8. Energy-dependent cross section for a neutron beam incident along the c axis of a pyrolytic graphite filter (p. 439) | html | pdf |
- Fig. 4.4.2.9. Geometry of a polarizing monochromator showing the lattice planes (hkl) with |FN| = |FM|, the direction of P and , the expected spin direction and intensity (p. 439) | html | pdf |
- Fig. 4.4.2.10. Measured reflectivity curve of an FeCoV/TiZr polarizing supermirror with an extended angular range of polarization of three times that of γc(Ni) for neutrons without spin flip, ↑↑, and with spin flip, ↑↓ (p. 440) | html | pdf |
- Tables
- Table 4.4.2.1. Some important properties of materials used for neutron monochromator crystals (p. 433) | html | pdf |
- Table 4.4.2.2. Neutron scattering-length densities, Nbcoh, for some commonly used materials (p. 435) | html | pdf |
- Table 4.4.2.3. Characteristics of some typical elements and isotopes used as neutron filters (p. 439) | html | pdf |
- Table 4.4.2.4. Properties of polarizing crystal monochromators (p. 440) | html | pdf |
- Table 4.4.2.5. Scattering-length densities for some typical materials used for polarizing multilayers (p. 441) | html | pdf |
- Table 4.4.4.1. Bound scattering lengths, b, in fm and cross sections, σ, in barns (1 barn = 100 fm2) of the elements and their isotopesinteractive version (pp. 445-452) | html | pdf |
- Table 4.4.5.1. 〈j0〉 form factors for 3d transition elements and their ions (p. 454) | html | pdf |
- Table 4.4.5.2. 〈j0〉 form factors for 4d atoms and their ions (p. 455) | html | pdf |
- Table 4.4.5.3. 〈j0〉 form factors for rare-earth ions (p. 455) | html | pdf |
- Table 4.4.5.4. 〈j0〉 form factors for actinide ions (p. 455) | html | pdf |
- Table 4.4.5.5. 〈j2〉 form factors for 3d transition elements and their ions (p. 456) | html | pdf |
- Table 4.4.5.6. 〈j2〉 form factors for 4d atoms and their ions (p. 457) | html | pdf |
- Table 4.4.5.7. 〈j2〉 form factors for rare-earth ions (p. 457) | html | pdf |
- Table 4.4.5.8. 〈j2〉 form factors for actinide ions (p. 457) | html | pdf |
- Table 4.4.5.9. 〈j4〉 form factors for 3d atoms and their ions (p. 458) | html | pdf |
- Table 4.4.5.10. 〈j4〉 form factors for 4d atoms and their ions (p. 459) | html | pdf |
- Table 4.4.5.11. 〈j4〉 form factors for rare-earth ions (p. 459) | html | pdf |
- Table 4.4.5.12. 〈j4〉 form factors for actinide ions (p. 459) | html | pdf |
- Table 4.4.5.13. 〈j6〉 form factors for rare-earth ions (p. 460) | html | pdf |
- Table 4.4.5.14. 〈j6〉 form factors for actinide ions (p. 460) | html | pdf |
- Table 4.4.6.1. Absorption of the elements for neutrons (p. 461) | html | pdf |