International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 
International Tables for Crystallography (2006). Vol. C, ch. 4.2, p. 201

There are several possible approaches to generating an improved, `allZ' table of Xray wavelengths. These range from the option of conducting a massive measurement campaign to populate more fully the currently available tabular array to a large computational endeavor that might purport to carry out multiconfiguration, relativistic wavefunction calculations for the entire Periodic Table. It seems evident to us that there is little interest in, and even less support for, mounting the large effort needed to realize an improved tabulation of Xray wavelengths by purely experimental means, while the possibility of proceeding in an entirely theoretical mode is not consistent with the evident need that at least some wavelengths be reported with uncertainties that approach the limit of what can be obtained from the naturally occurring Xray lines. The actual location of any useful feature of a line is influenced not only by the physical and chemical environment of the emitting atom but also by inevitable multielectron excitation processes that perturb the entire spectral profile. Calculation of such complexities currently lies beyond the limits of practicality, eliminating the option of proceeding without strong coupling to experimental profile locations, at least for crystallographically important Xray lines. Similar considerations apply a fortiori to those lines needed as reference wavelengths for exotic atom measurements, such as those leading to masses of elementary particles and tests of basic theory [see e.g. Beyer, Indelicato, Finlayson, Liesen & Deslattes (1991)].
In constructing the accompanying tables, we have chosen a new procedure that differs from those described above, and accordingly requires some detailed commentary. We begin with the presently available network of well documented experimental measurements, originally established to provide a test bed for the theoretical methods developing at that time (Deslattes & Kessler, 1985). This modest network was the first compilation to make use of the, then newly available, connection between the Xray region and the base unit of the International System of measurement (the SI) based on optical interferometric measurement of a lattice period as revealed by Xray interferometry. Details of the generation of this network and its subsequent expansion will be given below. Using this network as a test set gave clearer suggestions as to specific limitations of the theoretical modelling than had been evident from using other, less selective, experimental reference compilations available at that time. Extensive theoretical developments before and, especially, after the appearance of this new experimental reference set have shown a steady convergence toward these critically evaluated data. Following this evolution further, our longterm plan is to use these new theoretical calculations to provide a more structured and accurate interpolation procedure for estimating the spectra of elements lying between those for which we have accurate measurements, or spectra well connected to a directly established reference wavelength. The present table provides experimental and theoretical values for some of the more prominent K and L series lines and is a subset of a larger effort for all K and L series lines connecting the n = 1 to n = 4 shells. The more complete table will be published elsewhere and be made available on the the NIST Physical Reference Data web site. In addition, experimental values for the K and L edges are provided. Although the reference data are inadequate in both low and high ranges of Z, the general consistency of theory and experiment through the region 20 Z 90 for the strong Kseries and Lseries lines suggests that, in the absence of good reference measurements, the uncorrected theoretical values should be considered for applications not requiring the highest accuracy.
References
Beyer, H., Indelicato, P., Finlayson, H., Liesen, D. & Deslattes, R. D. (1991). Measurement of the 1s Lambshift in hydrogenlike nickel. Phys. Rev. A, 43, 223–227.Deslattes, R. D. & Kessler, E. G. Jr (1985). Experimental evaluation of innervacancy level energies for comparison with theory. Atomic innershell physics, edited by B. Crasemann, pp. 181–235. New York: Plenum.