International Tables for Crystallography (2013). Vol. D. ch. 1.11, pp. 269-283
https://doi.org/10.1107/97809553602060000910 |
Chapter 1.11. Tensorial properties of local crystal susceptibilities
Contents
- 1.11. Tensorial properties of local crystal susceptibilities (pp. 269-283) | html | pdf | chapter contents |
- 1.11.1. Introduction (pp. 269-270) | html | pdf |
- 1.11.2. Symmetry restrictions on local tensorial susceptibility and forbidden reflections (pp. 270-272) | html | pdf |
- 1.11.3. Polarization properties and azimuthal dependence (pp. 272-274) | html | pdf |
- 1.11.4. Physical mechanisms for the anisotropy of atomic X-ray susceptibility (p. 274) | html | pdf |
- 1.11.5. Non-resonant magnetic scattering (p. 275) | html | pdf |
- 1.11.6. Resonant atomic factors: multipole expansion (pp. 275-280) | html | pdf |
- 1.11.6.1. Tensor atomic factors: internal symmetry (pp. 275-276) | html | pdf |
- 1.11.6.2. Tensor atomic factors (non-magnetic case) (pp. 276-277) | html | pdf |
- 1.11.6.3. Hidden internal symmetry of the dipole–quadrupole tensors in resonant atomic factors (pp. 277-278) | html | pdf |
- 1.11.6.4. Tensor structure factors (p. 278) | html | pdf |
- 1.11.6.5. Tensor atomic factors (magnetic case) (pp. 278-279) | html | pdf |
- 1.11.6.6. Tensor atomic factors (spherical tensor representation) (pp. 279-280) | html | pdf |
- 1.11.7. Glossary (p. 281) | html | pdf |
- References | html | pdf |
- Tables
- Table 1.11.2.1. The indices of the screw-axis/glide-plane forbidden reflections () and independent components of their tensorial structure factors (p. 271) | html | pdf |
- Table 1.11.2.2. The indices of the forbidden reflections and corresponding tensors of structure factors for the cubic space groups () (p. 272) | html | pdf |
- Table 1.11.6.1. Coefficients corresponding to various kinds of tensor symmetry with respect to space inversion , rotations , and time reversal (p. 275) | html | pdf |
- Table 1.11.6.2. Identification of properties under time inversion and space inversion of tensors associated with multipole expansion (p. 280) | html | pdf |