International Tables for Crystallography
Volume F: Crystallography of biological macromolecules
Second online edition (2012) ISBN: 978-0-470-66078-2 doi: 10.1107/97809553602060000111
|
1
|
2
|
Edited by E. Arnold, D. M. Himmel and M. G. Rossmann
Contents
- Preface to the second edition (p. xxix) | html | pdf |
- Introduction
- 1.2. Historical background (pp. 5-12) | html | pdf | chapter contents |
- 1.2.1. Introduction (p. 5) | html | pdf |
- 1.2.2. 1912 to the 1950s (pp. 5-6) | html | pdf |
- 1.2.3. The first investigations of biological macromolecules (pp. 6-7) | html | pdf |
- 1.2.4. Globular proteins in the 1950s (pp. 7-8) | html | pdf |
- 1.2.5. The first protein structures (1957 to the 1970s) (pp. 8-9) | html | pdf |
- 1.2.6. Technological developments (1958 to the 1980s) (pp. 9-10) | html | pdf |
- 1.2.7. Meetings (p. 10) | html | pdf |
- References
| html | pdf |
- Figures
- 1.3. Macromolecular crystallography and medicine (pp. 13-38) | html | pdf | chapter contents |
- 1.3.1. Introduction (p. 13) | html | pdf |
- 1.3.2. Crystallography and medicine (pp. 13-14) | html | pdf |
- 1.3.3. Crystallography and genetic diseases (pp. 14-15) | html | pdf |
- 1.3.4. Crystallography and development of novel pharmaceuticals (pp. 15-26) | html | pdf |
- 1.3.4.1. Infectious diseases (pp. 16-18) | html | pdf |
- 1.3.4.1.1. Viral diseases (p. 16) | html | pdf |
- 1.3.4.1.2. Bacterial diseases (p. 16) | html | pdf |
- 1.3.4.1.3. Protozoan infections (pp. 16-17) | html | pdf |
- 1.3.4.1.4. Fungi (pp. 17-18) | html | pdf |
- 1.3.4.1.5. Helminths (p. 18) | html | pdf |
- 1.3.4.2. Resistance (pp. 18-22) | html | pdf |
- 1.3.4.3. Non-communicable diseases (pp. 22-25) | html | pdf |
- 1.3.4.3.1. Cancers (pp. 22-23) | html | pdf |
- 1.3.4.3.2. Diabetes (p. 23) | html | pdf |
- 1.3.4.3.3. Blindness (p. 23) | html | pdf |
- 1.3.4.3.4. Cardiovascular disorders (p. 23) | html | pdf |
- 1.3.4.3.5. Neurological disorders (pp. 23-25) | html | pdf |
- 1.3.4.4. Drug metabolism and crystallography (p. 25) | html | pdf |
- 1.3.4.5. Drug manufacturing and crystallography (pp. 25-26) | html | pdf |
- 1.3.5. Vaccines, immunology and crystallography (p. 26) | html | pdf |
- 1.3.6. Outlook and dreams (pp. 26-27) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.3.3.1. Crystal structures and genetic diseases (p. 14) | html | pdf |
- Table 1.3.4.1. Important human pathogenic viruses and their proteins (pp. 17-18) | html | pdf |
- Table 1.3.4.2. Protein structures of important human pathogenic bacteria (pp. 19-20) | html | pdf |
- Table 1.3.4.3. Protein structures of important human pathogenic protozoa, fungi and helminths (pp. 21-22) | html | pdf |
- Table 1.3.4.4. Mechanisms of resistance (p. 23) | html | pdf |
- Table 1.3.4.5. Important human protein structures in drug design (pp. 24-25) | html | pdf |
- 1.4. Perspectives for the future (pp. 39-44) | html | pdf | chapter contents |
- 1.4.1. Gazing into the crystal ball (E. Arnold) (pp. 39-40) | html | pdf |
- 1.4.1.1. What can we expect to see in the future of science and technology in general? (p. 39) | html | pdf |
- 1.4.1.2. How will crystallography change in the future? (pp. 39-40) | html | pdf |
- 1.4.2. Brief comments on Gazing into the crystal ball (M. G. Rossmann) (p. 40) | html | pdf |
- 1.4.3. Additional comments on Gazing into the crystal ball (D. M. Himmel) (p. 41) | html | pdf |
- 1.4.4. Gazing into the crystal ball – the X-ray free-electron laser (J. C. H. Spence) (pp. 41-42) | html | pdf |
- 1.4.5. Electron microscopy's impact on structural biology (S. Sun) (pp. 42-43) | html | pdf |
- References
| html | pdf |
- Basic crystallography
- 2.1. Introduction to basic crystallography (pp. 45-63) | html | pdf | chapter contents |
- 2.1.1. Crystals (pp. 45-46) | html | pdf |
- 2.1.2. Symmetry (pp. 46-47) | html | pdf |
- 2.1.3. Point groups and crystal systems (pp. 47-52) | html | pdf |
- 2.1.4. Basic diffraction physics (pp. 52-57) | html | pdf |
- 2.1.4.1. Diffraction by one electron (pp. 52-53) | html | pdf |
- 2.1.4.2. Scattering by a system of two electrons (pp. 53-54) | html | pdf |
- 2.1.4.3. Scattering by atoms (pp. 54-55) | html | pdf |
- 2.1.4.3.1. Scattering by one atom (p. 54) | html | pdf |
- 2.1.4.3.2. Scattering by a plane of atoms (pp. 54-55) | html | pdf |
- 2.1.4.4. Anomalous dispersion (p. 55) | html | pdf |
- 2.1.4.5. Scattering by a crystal (pp. 55-56) | html | pdf |
- 2.1.4.6. The structure factor (pp. 56-57) | html | pdf |
- 2.1.5. Reciprocal space and the Ewald sphere (pp. 57-58) | html | pdf |
- 2.1.6. Mosaicity and integrated reflection intensity (pp. 58-60) | html | pdf |
- 2.1.7. Calculation of electron density (p. 60) | html | pdf |
- 2.1.8. Symmetry in the diffraction pattern (pp. 60-61) | html | pdf |
- 2.1.9. The Patterson function (pp. 62-63) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.1.2.1. The most common space groups for protein crystals (p. 47) | html | pdf |
- Table 2.1.3.1. The 11 enantiomorphic point groups (pp. 48-49) | html | pdf |
- Table 2.1.3.2. The 11 point groups with a centre of symmetry (pp. 50-51) | html | pdf |
- Table 2.1.3.3. The icosahedral point group 532 (p. 52) | html | pdf |
- Table 2.1.3.4. The seven crystal systems (p. 52) | html | pdf |
- Table 2.1.4.1. The position of the Kα edge of different elements (p. 54) | html | pdf |
- 2.2. Quality indicators in macromolecular crystallography: definitions and applications (pp. 64-74) | html | pdf | chapter contents |
- 2.2.1. Introduction (pp. 64-65) | html | pdf |
- 2.2.2. Quality indicators for diffraction data (pp. 65-68) | html | pdf |
- 2.2.3. Comparing different diffraction data sets (p. 68) | html | pdf |
- 2.2.4. Quality indicators for substructure determination (pp. 68-69) | html | pdf |
- 2.2.5. Quality indicators for phase determination (p. 69) | html | pdf |
- 2.2.6. Quality indicators for density modification and phase improvement (pp. 69-70) | html | pdf |
- 2.2.7. Quality indicators for molecular replacement (pp. 70-71) | html | pdf |
- 2.2.8. Quality indicators for refinement (p. 71) | html | pdf |
- 2.2.9. Quality indicators for the refined model (pp. 71-73) | html | pdf |
- 2.2.10. Error estimation for the refined model (p. 73) | html | pdf |
- 2.2.11. The most commonly used quality indicators (p. 73) | html | pdf |
- References
| html | pdf |
- Tables
- Table 2.2.11.1. Definitions of the most commonly used quality indicators (p. 72) | html | pdf |
- Techniques of molecular biology
- 3.1. Preparing recombinant proteins for X-ray crystallography (pp. 75-91) | html | pdf | chapter contents |
- 3.1.1. Introduction (p. 75) | html | pdf |
- 3.1.2. Overview (pp. 75-76) | html | pdf |
- 3.1.3. Engineering an expression construct (pp. 76-77) | html | pdf |
- 3.1.3.1. Choosing an expression system (p. 76) | html | pdf |
- 3.1.3.2. Creating an expression construct (pp. 76-77) | html | pdf |
- 3.1.3.3. Addition of tags or domains (p. 77) | html | pdf |
- 3.1.4. Expression systems (pp. 77-85) | html | pdf |
- 3.1.4.1. E. coli (pp. 77-82) | html | pdf |
- 3.1.4.2. Yeast (pp. 82-83) | html | pdf |
- 3.1.4.3. Baculoviruses and insect cells (pp. 83-84) | html | pdf |
- 3.1.4.4. Mammalian cells (pp. 84-85) | html | pdf |
- 3.1.5. Protein purification (pp. 85-88) | html | pdf |
- 3.1.5.1. Conventional protein purification (pp. 85-87) | html | pdf |
- 3.1.5.2. Affinity purification (p. 87) | html | pdf |
- 3.1.5.3. Purifying and refolding denatured proteins (pp. 87-88) | html | pdf |
- 3.1.6. Characterization of the purified product (pp. 88-89) | html | pdf |
- 3.1.6.1. Assessment of sample homogeneity (pp. 88-89) | html | pdf |
- 3.1.6.2. Protein storage (p. 89) | html | pdf |
- 3.1.7. Reprise (pp. 89-90) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.1.4.1. Strategies for improving expression in E. coli (p. 79) | html | pdf |
- 3.2. Expression and purification of membrane proteins for structural studies (pp. 92-98) | html | pdf | chapter contents |
- 3.2.1. Introduction (p. 92) | html | pdf |
- 3.2.2. A consensus strategy for membrane-protein expression (pp. 92-93) | html | pdf |
- 3.2.2.1. Choosing the expression system and affinity tags (p. 92) | html | pdf |
- 3.2.2.2. Strategies for improving membrane-protein expression (p. 93) | html | pdf |
- 3.2.3. A consensus strategy for membrane-protein purification (pp. 93-96) | html | pdf |
- 3.2.3.1. General principles (pp. 93-94) | html | pdf |
- 3.2.3.2. Cell lysis and membrane isolation (p. 94) | html | pdf |
- 3.2.3.3. Detergent extraction of membrane proteins (pp. 94-95) | html | pdf |
- 3.2.3.4. General considerations for monitoring membrane-protein activity (p. 95) | html | pdf |
- 3.2.3.5. Primary purification: affinity chromatography (p. 95) | html | pdf |
- 3.2.3.6. Secondary purification: size-exclusion and ion-exchange chromatography (p. 95) | html | pdf |
- 3.2.3.7. Concentrating membrane-protein samples for crystallography (pp. 95-96) | html | pdf |
- 3.2.4. Common purification pitfalls and prioritized alternative strategies (p. 96) | html | pdf |
- 3.2.4.1. Poor solubility of the target protein (p. 96) | html | pdf |
- 3.2.4.2. The isolated target protein does not crystallize (p. 96) | html | pdf |
- 3.2.5. Summary (p. 96) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.2.2.1. Strategies for improving recombinant membrane-protein expression in E. coli (p. 93) | html | pdf |
- Crystallization
- 4.1. General methods (pp. 99-121) | html | pdf | chapter contents |
- 4.1.1. Introduction (pp. 99-100) | html | pdf |
- 4.1.1.1. Prologue (p. 99) | html | pdf |
- 4.1.1.2. Crystallization principles (pp. 99-100) | html | pdf |
- 4.1.2. Main parameters that affect crystallization of macromolecules (pp. 100-104) | html | pdf |
- 4.1.2.1. Crystallizing agents (pp. 100-101) | html | pdf |
- 4.1.2.2. Physical, physical–chemical and biochemical variables (pp. 101-102) | html | pdf |
- 4.1.2.3. Additives (pp. 102-103) | html | pdf |
- 4.1.2.4. Purity and homogeneity (pp. 103-104) | html | pdf |
- 4.1.3. Crystallization arrangements and classical methodologies (pp. 104-107) | html | pdf |
- 4.1.3.1. Historical development of methods (pp. 104-105) | html | pdf |
- 4.1.3.2. Batch crystallizations (p. 105) | html | pdf |
- 4.1.3.3. Dialysis methods (p. 105) | html | pdf |
- 4.1.3.4. Vapour-diffusion methods (p. 106) | html | pdf |
- 4.1.3.5. Free-interface and counter-diffusion methods (p. 107) | html | pdf |
- 4.1.3.6. Miniaturization, automation and robotics (p. 107) | html | pdf |
- 4.1.4. Advanced crystallization methodologies (pp. 107-111) | html | pdf |
- 4.1.4.1. Crystallization in convection-free media (pp. 107-110) | html | pdf |
- 4.1.4.2. Methods making use of temperature and pressure (p. 110) | html | pdf |
- 4.1.4.3. Methods making use of crystallization chaperones (p. 110) | html | pdf |
- 4.1.4.4. Seeding (pp. 110-111) | html | pdf |
- 4.1.5. From the macromolecule to perfect crystals: the physics view (pp. 111-113) | html | pdf |
- 4.1.5.1. Prenucleation and nucleation (p. 111) | html | pdf |
- 4.1.5.2. Growth and cessation of growth (pp. 111-112) | html | pdf |
- 4.1.5.3. Uncoupling nucleation and growth, and the constant-growth regime (p. 112) | html | pdf |
- 4.1.5.4. Crystal perfection (pp. 112-113) | html | pdf |
- 4.1.6. How to crystallize a new macromolecule: the structural biology view (pp. 113-115) | html | pdf |
- 4.1.6.1. How to start and how to choose what screening kits to start with (p. 113) | html | pdf |
- 4.1.6.2. Rules and general principles (p. 114) | html | pdf |
- 4.1.6.3. Database mining and statistics (pp. 114-115) | html | pdf |
- 4.1.6.4. Strategic concerns: a summary (p. 115) | html | pdf |
- 4.1.7. The future of protein crystal growth (p. 115) | html | pdf |
- References
| html | pdf |
- Figures
- 4.2. Crystallization of membrane proteins (pp. 122-128) | html | pdf | chapter contents |
- 4.2.1. Introduction (p. 122) | html | pdf |
- 4.2.2. Principles of membrane-protein crystallization (pp. 122-123) | html | pdf |
- 4.2.3. General properties of detergents relevant to membrane-protein crystallization (pp. 123-125) | html | pdf |
- 4.2.4. The `small amphiphile concept' (pp. 125-126) | html | pdf |
- 4.2.5. Membrane-protein crystallization with the help of antibody Fv fragments (p. 126) | html | pdf |
- 4.2.6. Membrane-protein crystallization using cubic bicontinuous lipidic phases (p. 126) | html | pdf |
- 4.2.7. General recommendations (pp. 126-127) | html | pdf |
- References
| html | pdf |
- Tables
- Table 4.2.1.1. Compilation of membrane proteins with known structures, including crystallization conditions and key references for the structure determinations (pp. 123-124) | html | pdf |
- Table 4.2.2.1. Potentially useful detergents for membrane-protein crystallizations with molecular weights and CMCs [in water, from Michel (1991) or as provided by the vendor] (p. 125) | html | pdf |
- Table 4.2.3.1. Summary of the results of attempts to crystallize the two-subunit cytochrome c oxidase from the soil bacterium Paracoccus denitrificans using different detergents (after Ostermeier et al., 1997) (p. 126) | html | pdf |
- 4.3. Application of protein engineering to enhance crystallizability and improve crystal properties (pp. 129-139) | html | pdf | chapter contents |
- 4.3.1. Introduction (p. 129) | html | pdf |
- 4.3.2. Microscopic aspects of protein crystallization (pp. 129-130) | html | pdf |
- 4.3.3. Engineering proteins with enhanced solubility (pp. 130-131) | html | pdf |
- 4.3.4. Optimization of target constructs (p. 131) | html | pdf |
- 4.3.5. The use of fusion proteins for crystallization (pp. 131-132) | html | pdf |
- 4.3.6. Noncovalent crystallization chaperones (pp. 132-133) | html | pdf |
- 4.3.7. Removal of post-translational modifications (pp. 133-134) | html | pdf |
- 4.3.8. Stabilization of protein targets (p. 134) | html | pdf |
- 4.3.9. Surface-entropy reduction (SER) (pp. 134-135) | html | pdf |
- 4.3.10. Improvement of crystal quality (p. 135) | html | pdf |
- 4.3.11. Conclusions (pp. 135-136) | html | pdf |
- References
| html | pdf |
- Figures
- 4.4. High-throughput X-ray crystallography (pp. 140-144) | html | pdf | chapter contents |
- 4.4.1. Introduction (p. 140) | html | pdf |
- 4.4.2. Design of multiple constructs: bioinformatics analysis of genome sequences (p. 140) | html | pdf |
- 4.4.3. Cloning (pp. 140-142) | html | pdf |
- 4.4.3.1. Ligation-independent and recombination cloning (pp. 140-141) | html | pdf |
- 4.4.3.2. Practical application (pp. 141-142) | html | pdf |
- 4.4.4. Protein expression and purification (p. 142) | html | pdf |
- 4.4.4.1. Autoinduction (p. 142) | html | pdf |
- 4.4.4.2. Expression and solubility test: dot blot (p. 142) | html | pdf |
- 4.4.4.3. Small-scale purification (p. 142) | html | pdf |
- 4.4.5. Crystallization (pp. 142-143) | html | pdf |
- 4.4.6. Synchrotron data collection (p. 143) | html | pdf |
- References
| html | pdf |
- Figures
- Crystal properties and handling
- 5.1. Crystal morphology, optical properties of crystals and crystal mounting (pp. 145-151) | html | pdf | chapter contents |
- 5.1.1. Crystal morphology and optical properties (pp. 145-148) | html | pdf |
- 5.1.1.1. Crystal growth habits (pp. 145-146) | html | pdf |
- 5.1.1.1.1. The shape of a crystal – growth habits (p. 145) | html | pdf |
- 5.1.1.1.2. Quality of protein crystals (p. 145) | html | pdf |
- 5.1.1.1.3. Polymorphism (p. 146) | html | pdf |
- 5.1.1.1.4. Twinning (p. 146) | html | pdf |
- 5.1.1.2. Properties of crystal faces (p. 146) | html | pdf |
- 5.1.1.2.1. Indexing crystal faces (p. 146) | html | pdf |
- 5.1.1.2.2. Measurement of crystal habit (p. 146) | html | pdf |
- 5.1.1.3. Optical properties (pp. 146-148) | html | pdf |
- 5.1.1.3.1. Crystals between crossed polarizers (pp. 147-148) | html | pdf |
- 5.1.1.3.2. Refractive indices and what they tell us about structure (p. 148) | html | pdf |
- 5.1.1.4. Packing of molecules in crystals (p. 148) | html | pdf |
- 5.1.2. Crystal mounting (pp. 148-150) | html | pdf |
- 5.1.2.1. Introduction to crystal mounting (p. 148) | html | pdf |
- 5.1.2.2. Tools for crystal mounting (pp. 148-149) | html | pdf |
- 5.1.2.2.1. Microscope (p. 149) | html | pdf |
- 5.1.2.2.2. Capillaries (p. 149) | html | pdf |
- 5.1.2.2.3. Thumb pump (p. 149) | html | pdf |
- 5.1.2.2.4. Heater (p. 149) | html | pdf |
- 5.1.2.3. Capillary mounting (pp. 149-150) | html | pdf |
- References
| html | pdf |
- Figures
- 5.2. Crystal-density measurements (pp. 152-157) | html | pdf | chapter contents |
- 5.2.1. Introduction (p. 152) | html | pdf |
- 5.2.2. Solvent in macromolecular crystals (p. 152) | html | pdf |
- 5.2.3. Matthews number (p. 152) | html | pdf |
- 5.2.4. Algebraic concepts (pp. 152-153) | html | pdf |
- 5.2.5. Experimental estimation of hydration (p. 153) | html | pdf |
- 5.2.6. Methods for measuring crystal density (pp. 153-156) | html | pdf |
- 5.2.6.1. Pycnometry (p. 154) | html | pdf |
- 5.2.6.2. Volumenometry (p. 154) | html | pdf |
- 5.2.6.3. The method of Archimedes (p. 154) | html | pdf |
- 5.2.6.4. Immersion microbalance (p. 154) | html | pdf |
- 5.2.6.5. Flotation (pp. 154-155) | html | pdf |
- 5.2.6.6. Tomographic crystal-volume measurement (p. 155) | html | pdf |
- 5.2.6.7. Gradient-tube method (pp. 155-156) | html | pdf |
- 5.2.7. How to handle the solvent density (p. 156) | html | pdf |
- References
| html | pdf |
- Tables
- Table 5.2.6.1. Organic liquids for density determinations (p. 155) | html | pdf |
- Table 5.2.6.2. Inorganic salts for density determinations (p. 155) | html | pdf |
- Radiation sources and optics
- 6.1. X-ray sources (pp. 159-167) | html | pdf | chapter contents |
- 6.1.1. Overview (p. 159) | html | pdf |
- 6.1.2. Generation of X-rays (pp. 159-162) | html | pdf |
- 6.1.2.1. Stationary-target X-ray tubes (p. 159) | html | pdf |
- 6.1.2.2. Rotating-anode X-ray tubes (pp. 159-160) | html | pdf |
- 6.1.2.3. Microfocus X-ray tubes (p. 160) | html | pdf |
- 6.1.2.4. Synchrotron-radiation sources (pp. 160-162) | html | pdf |
- 6.1.3. Properties of the X-ray beam (pp. 162-164) | html | pdf |
- 6.1.3.1. Beam size (p. 162) | html | pdf |
- 6.1.3.2. X-ray wavelength (p. 162) | html | pdf |
- 6.1.3.3. Spectral composition (pp. 162-163) | html | pdf |
- 6.1.3.4. Intensity (p. 163) | html | pdf |
- 6.1.3.5. Cross fire (p. 163) | html | pdf |
- 6.1.3.6. Beam stability (pp. 163-164) | html | pdf |
- 6.1.4. Beam conditioning (pp. 164-166) | html | pdf |
- 6.1.4.1. X-ray mirrors (pp. 164-165) | html | pdf |
- 6.1.4.2. Focusing collimators for microfocus sources (p. 165) | html | pdf |
- 6.1.4.3. Other focusing collimators (pp. 165-166) | html | pdf |
- 6.1.4.4. Crystal monochromators (p. 166) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 6.1.2.1. Standard X-ray tube inserts (p. 159) | html | pdf |
- 6.2. Neutron sources (pp. 168-176) | html | pdf | chapter contents |
- 6.2.1. Reactors (pp. 168-172) | html | pdf |
- 6.2.1.1. Basic reactor physics (p. 168) | html | pdf |
- 6.2.1.2. Moderators for neutron scattering (p. 169) | html | pdf |
- 6.2.1.2.1. Thermal moderators (p. 169) | html | pdf |
- 6.2.1.2.2. Cold moderators (p. 169) | html | pdf |
- 6.2.1.3. Beamline components (pp. 169-171) | html | pdf |
- 6.2.1.3.1. Collimators and filters (pp. 169-170) | html | pdf |
- 6.2.1.3.2. Crystal monochromators (p. 170) | html | pdf |
- 6.2.1.3.3. Multilayer monochromators and supermirrors (pp. 170-171) | html | pdf |
- 6.2.1.3.4. Velocity selectors (p. 171) | html | pdf |
- 6.2.1.3.5. Neutron guides (p. 171) | html | pdf |
- 6.2.1.4. Detectors (pp. 171-172) | html | pdf |
- 6.2.1.4.1. Multiwire proportional counters (pp. 171-172) | html | pdf |
- 6.2.1.4.2. Image plates (p. 172) | html | pdf |
- 6.2.1.5. Instrument resolution functions (p. 172) | html | pdf |
- 6.2.2. Spallation neutron sources (pp. 172-174) | html | pdf |
- 6.2.2.1. Spallation neutron production (p. 173) | html | pdf |
- 6.2.2.2. Moderators (p. 173) | html | pdf |
- 6.2.2.3. Beamline optics (pp. 173-174) | html | pdf |
- 6.2.2.4. Time-of-flight techniques (p. 174) | html | pdf |
- 6.2.2.5. Data-collection considerations (p. 174) | html | pdf |
- 6.2.3. Summary (p. 175) | html | pdf |
- References
| html | pdf |
- Figures
- X-ray detectors
- 7.1. Comparison of X-ray detectors (pp. 177-182) | html | pdf | chapter contents |
- 7.1.1. Commonly used detectors: general considerations (pp. 177-178) | html | pdf |
- 7.1.2. Evaluating and comparing detectors (pp. 178-179) | html | pdf |
- 7.1.3. Characteristics of different detector approaches (pp. 179-181) | html | pdf |
- 7.1.3.1. Point versus linear versus area detection (p. 179) | html | pdf |
- 7.1.3.2. Counting and integrating detectors (pp. 179-181) | html | pdf |
- 7.1.3.2.1. Photon-counting detectors (pp. 179-180) | html | pdf |
- 7.1.3.2.2. Integrating detectors (pp. 180-181) | html | pdf |
- 7.1.4. Future detectors (p. 181) | html | pdf |
- References
| html | pdf |
- Tables
- Table 7.1.1.1. X-ray detectors for crystallography (p. 177) | html | pdf |
- 7.2. CCD detectors (pp. 183-188) | html | pdf | chapter contents |
- 7.2.1. Overview (p. 183) | html | pdf |
- 7.2.2. CCD detector assembly (pp. 183-184) | html | pdf |
- 7.2.3. Calibration and correction (pp. 184-186) | html | pdf |
- 7.2.3.1. Dark-current subtraction (p. 185) | html | pdf |
- 7.2.3.2. Removal of radioactive decay events (p. 185) | html | pdf |
- 7.2.3.3. Geometric distortion (p. 185) | html | pdf |
- 7.2.3.4. Flat-field corrections (pp. 185-186) | html | pdf |
- 7.2.3.5. Obliquity correction (p. 186) | html | pdf |
- 7.2.3.6. Modular images (p. 186) | html | pdf |
- 7.2.4. Detector system integration (pp. 186-187) | html | pdf |
- 7.2.5. Applications to macromolecular crystallography (p. 187) | html | pdf |
- 7.2.6. Future of CCD detectors (p. 187) | html | pdf |
- References
| html | pdf |
- Figures
- Synchrotron crystallography
- 8.1. Synchrotron-radiation instrumentation, methods and scientific utilization (pp. 189-204) | html | pdf | chapter contents |
- 8.1.1. Introduction (p. 189) | html | pdf |
- 8.1.2. The physics of SR (pp. 189-190) | html | pdf |
- 8.1.3. Insertion devices (IDs) (pp. 190-191) | html | pdf |
- 8.1.4. Beam characteristics delivered at the crystal sample (pp. 191-192) | html | pdf |
- 8.1.5. Evolution of SR machines and experiments (pp. 192-194) | html | pdf |
- 8.1.5.1. First-generation SR machines (pp. 192-193) | html | pdf |
- 8.1.5.2. Second-generation dedicated machines (p. 193) | html | pdf |
- 8.1.5.3. Third-generation high spectral brightness machines (pp. 193-194) | html | pdf |
- 8.1.5.4. New national SR machines (p. 194) | html | pdf |
- 8.1.5.5. X-ray free-electron lasers (XFELs) (p. 194) | html | pdf |
- 8.1.6. SR instrumentation (pp. 194-195) | html | pdf |
- 8.1.7. SR monochromatic and Laue diffraction geometry (pp. 195-197) | html | pdf |
- 8.1.7.1. Laue geometry: sources, optics, sample reflection bandwidth and spot size (pp. 195-196) | html | pdf |
- 8.1.7.2. Monochromatic SR beams: optical configurations and sample rocking width (pp. 196-197) | html | pdf |
- 8.1.7.2.1. Curved single-crystal monochromator (p. 196) | html | pdf |
- 8.1.7.2.2. Double-crystal monochromator (p. 196) | html | pdf |
- 8.1.7.2.3. Widening of monochromatic wavelength range provision (pp. 196-197) | html | pdf |
- 8.1.7.2.4. Crystal sample rocking width (p. 197) | html | pdf |
- 8.1.8. Scientific utilization of SR in protein crystallography (pp. 197-200) | html | pdf |
- 8.1.8.1. Atomic and ultra-high-resolution macromolecular crystallography (p. 198) | html | pdf |
- 8.1.8.2. Small crystals (p. 198) | html | pdf |
- 8.1.8.3. Time-resolved macromolecular crystallography (p. 198) | html | pdf |
- 8.1.8.4. Multi-macromolecular complexes (pp. 198-199) | html | pdf |
- 8.1.8.5. Optimized anomalous dispersion (MAD), improved multiple isomorphous replacement (MIR) data and `structural genomics' (pp. 199-200) | html | pdf |
- 8.1.8.6. Radiation damage (p. 200) | html | pdf |
- 8.1.9. Concluding remarks (p. 200) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 8.1.4.1. Internet addresses of SR facilities with macromolecular crystallography beamlines (p. 192) | html | pdf |
- Table 8.1.5.1. Structures in the Protein Data Bank (PDB) for which data were collected at the SRS (p. 194) | html | pdf |
- 8.2. Laue crystallography: time-resolved studies (pp. 205-210) | html | pdf | chapter contents |
- 8.2.1. Introduction (p. 205) | html | pdf |
- 8.2.2. Principles of Laue diffraction (pp. 205-206) | html | pdf |
- 8.2.3. Practical considerations in the Laue technique (pp. 206-208) | html | pdf |
- 8.2.4. The time-resolved experiment (pp. 208-209) | html | pdf |
- 8.2.5. Conclusions (p. 209) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 8.2.2.1. Advantages and disadvantages of the Laue technique (p. 207) | html | pdf |
- Table 8.2.5.1. Time-resolved Laue diffraction experiments (p. 209) | html | pdf |
- X-ray data collection
- 9.1. Principles of monochromatic data collection (pp. 211-230) | html | pdf | chapter contents |
- 9.1.1. Introduction (p. 211) | html | pdf |
- 9.1.2. The components of a monochromatic X-ray experiment (p. 211) | html | pdf |
- 9.1.3. Data completeness (p. 211) | html | pdf |
- 9.1.4. X-ray sources (pp. 211-212) | html | pdf |
- 9.1.4.1. Conventional sources (pp. 211-212) | html | pdf |
- 9.1.4.2. Synchrotron storage rings (p. 212) | html | pdf |
- 9.1.5. Goniostat geometry (pp. 212-213) | html | pdf |
- 9.1.5.1. Overview (p. 212) | html | pdf |
- 9.1.5.2. The screenless rotation method and 2D detectors (pp. 212-213) | html | pdf |
- 9.1.6. Basis of the rotation method (pp. 213-217) | html | pdf |
- 9.1.6.1. Rotation geometry (p. 213) | html | pdf |
- 9.1.6.2. Diffraction pattern at a single orientation: the `still' image (pp. 213-214) | html | pdf |
- 9.1.6.3. Rocking curve: crystal mosaicity and beam divergence (p. 214) | html | pdf |
- 9.1.6.4. Rotation images and lunes (p. 214) | html | pdf |
- 9.1.6.5. Partially and fully recorded reflections (pp. 214-215) | html | pdf |
- 9.1.6.6. The width of the rotation range per image: fine φ slicing (p. 215) | html | pdf |
- 9.1.6.7. Wide slicing (pp. 215-217) | html | pdf |
- 9.1.7. Rotation method: geometrical completeness (pp. 217-221) | html | pdf |
- 9.1.7.1. Total rotation range for non-anomalous data (pp. 217-219) | html | pdf |
- 9.1.7.2. Total rotation range for anomalous-dispersion data (pp. 219-220) | html | pdf |
- 9.1.7.3. Blind region (pp. 220-221) | html | pdf |
- 9.1.7.4. Alternative indexing (p. 221) | html | pdf |
- 9.1.8. Crystal-to-detector distance (pp. 221-222) | html | pdf |
- 9.1.9. Wavelength (p. 222) | html | pdf |
- 9.1.10. Lysozyme as an example (pp. 222-223) | html | pdf |
- 9.1.11. Rotation method: qualitative factors (pp. 223-225) | html | pdf |
- 9.1.11.1. Inspection of reflection profiles (pp. 223-224) | html | pdf |
- 9.1.11.2. Exposure time (p. 224) | html | pdf |
- 9.1.11.3. Overloads (p. 224) | html | pdf |
- 9.1.11.4. R factor, I/σ(I) ratio and estimated uncertainties (pp. 224-225) | html | pdf |
- 9.1.12. Radiation damage (pp. 225-226) | html | pdf |
- 9.1.12.1. Historical perspective (p. 225) | html | pdf |
- 9.1.12.2. Cryogenic vitrification (pp. 225-226) | html | pdf |
- 9.1.12.3. High-intensity third-generation SR sources (p. 226) | html | pdf |
- 9.1.12.4. Correcting data for the effects of radiation damage (p. 226) | html | pdf |
- 9.1.13. Relating data collection to the problem in hand (pp. 226-228) | html | pdf |
- 9.1.13.1. Isomorphous-anomalous derivatives (pp. 226-227) | html | pdf |
- 9.1.13.2. Anomalous scattering, MAD and SAD (p. 227) | html | pdf |
- 9.1.13.3. Molecular replacement (p. 227) | html | pdf |
- 9.1.13.4. Definitive data for refinement of protein models (pp. 227-228) | html | pdf |
- 9.1.13.5. A series of mutant or complex structures (p. 228) | html | pdf |
- 9.1.13.6. Atomic resolution applications (p. 228) | html | pdf |
- 9.1.14. The importance of low-resolution data (p. 228) | html | pdf |
- 9.1.15. Data quality over the whole resolution range (pp. 228-229) | html | pdf |
- 9.1.16. Strategies for automated data acquisition (p. 229) | html | pdf |
- 9.1.17. Final remarks (p. 229) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.1.1.1. Size of the unit cell and number of reflections (p. 211) | html | pdf |
- Table 9.1.7.1. Standard choice of asymmetric unit in reciprocal space for different point groups from the CCP4 program suite (p. 217) | html | pdf |
- Table 9.1.7.2. Rotation range (°) required in different crystal classes (p. 219) | html | pdf |
- Table 9.1.7.3. Space groups with alternative, non-equivalent indexing schemes (p. 221) | html | pdf |
- 9.2. Robotic crystal loading (pp. 231-233) | html | pdf | chapter contents |
- 9.2.1. Introduction (p. 231) | html | pdf |
- 9.2.2. Robotic sample loaders (pp. 231-233) | html | pdf |
- 9.2.3. Conclusion (p. 233) | html | pdf |
- References
| html | pdf |
- Figures
- 9.3. X-ray diffraction imaging of whole cells (pp. 234-239) | html | pdf | chapter contents |
- 9.3.1. Introduction (pp. 234-235) | html | pdf |
- 9.3.2. Phase retrieval from single-particle diffraction data (p. 235) | html | pdf |
- 9.3.3. High-resolution imaging of yeast (pp. 235-237) | html | pdf |
- 9.3.3.1. Radiation damage (pp. 236-237) | html | pdf |
- 9.3.3.2. Low-dose three-dimensional imaging; low damage potential of stereoscopic viewing (p. 237) | html | pdf |
- 9.3.4. Conclusions (pp. 237-238) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.3.2.1. Summary of various algorithms (p. 235) | html | pdf |
- Cryocrystallography
- 10.1. Introduction to cryocrystallography (pp. 241-248) | html | pdf | chapter contents |
- 10.1.1. Cooling of biocrystals (pp. 241-242) | html | pdf |
- 10.1.1.1. Physical chemistry of biocrystals (pp. 241-242) | html | pdf |
- 10.1.1.2. Internal ice or phase transition (p. 242) | html | pdf |
- 10.1.1.3. Removal of the solvent layer (p. 242) | html | pdf |
- 10.1.1.4. Cooling rates (p. 242) | html | pdf |
- 10.1.2. Beneficial effects of low temperature (pp. 242-244) | html | pdf |
- 10.1.2.1. Suppression of radiation damage (pp. 242-243) | html | pdf |
- 10.1.2.2. Mechanical stability of the crystal mount (p. 243) | html | pdf |
- 10.1.2.3. Effect on resolution (p. 243) | html | pdf |
- 10.1.2.4. Annealing of biocrystals (pp. 243-244) | html | pdf |
- 10.1.2.5. Additional benefits from sub-77 K cooling with helium (p. 244) | html | pdf |
- 10.1.3. Principles of cooling equipment (pp. 244-245) | html | pdf |
- 10.1.3.1. Liquid-nitrogen-based cold gas supply (p. 244) | html | pdf |
- 10.1.3.2. Liquid-helium-based cold gas supply (pp. 244-245) | html | pdf |
- 10.1.3.3. Frost prevention (p. 245) | html | pdf |
- 10.1.4. Operational considerations (pp. 245-247) | html | pdf |
- 10.1.4.1. Dual-stream instruments (p. 245) | html | pdf |
- 10.1.4.2. Electrically heated nozzle (pp. 245-246) | html | pdf |
- 10.1.4.3. Temperature calibration (pp. 246-247) | html | pdf |
- 10.1.4.4. Transfer of the crystal to the diffractometer (p. 247) | html | pdf |
- 10.1.4.5. Automated robotic crystal handling (p. 247) | html | pdf |
- 10.1.5. Concluding note (p. 247) | html | pdf |
- References
| html | pdf |
- Figures
- 10.2. Cryocrystallography techniques and devices (pp. 249-255) | html | pdf | chapter contents |
- 10.2.1. Introduction (p. 249) | html | pdf |
- 10.2.2. Crystal preparation (pp. 249-250) | html | pdf |
- 10.2.3. Crystal mounting (pp. 250-252) | html | pdf |
- 10.2.4. Flash cooling (pp. 252-253) | html | pdf |
- 10.2.5. Transfer and storage (pp. 253-254) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 10.2.2.1. List of cryoprotectants used successfully for flash cooling macromolecular crystals (p. 249) | html | pdf |
- Table 10.2.2.2. Methods for introducing the cryoprotectants needed for flash cooling (p. 249) | html | pdf |
- 10.3. Radiation damage (pp. 256-261) | html | pdf | chapter contents |
- 10.3.1. Introduction (p. 256) | html | pdf |
- 10.3.2. Cryocrystallography as a mitigation strategy (pp. 256-257) | html | pdf |
- 10.3.3. Characteristics of radiation damage at cryotemperatures (pp. 257-258) | html | pdf |
- 10.3.4. Understanding radiation damage (pp. 258-259) | html | pdf |
- 10.3.5. Mitigating and correcting for radiation damage (p. 259) | html | pdf |
- 10.3.6. Using radiation damage (p. 260) | html | pdf |
- 10.3.7. Open questions (p. 260) | html | pdf |
- References
| html | pdf |
- Figures
- Data processing
- 11.1. Automatic indexing of oscillation images (pp. 263-265) | html | pdf | chapter contents |
- 11.1.1. Introduction (p. 263) | html | pdf |
- 11.1.2. The crystal orientation matrix (p. 263) | html | pdf |
- 11.1.3. Fourier analysis of the reciprocal-lattice vector distribution when projected onto a chosen direction (pp. 263-264) | html | pdf |
- 11.1.4. Exploring all possible directions to find a good set of basis vectors (p. 264) | html | pdf |
- 11.1.5. The program (p. 265) | html | pdf |
- References
| html | pdf |
- Figures
- 11.2. Integration of macromolecular diffraction data (pp. 266-271) | html | pdf | chapter contents |
- 11.2.1. Introduction (p. 266) | html | pdf |
- 11.2.2. Prerequisites for accurate integration (p. 266) | html | pdf |
- 11.2.2.1. Crystal parameters (p. 266) | html | pdf |
- 11.2.2.2. Detector parameters (p. 266) | html | pdf |
- 11.2.3. Methods of integration (pp. 266-267) | html | pdf |
- 11.2.4. The measurement box (p. 267) | html | pdf |
- 11.2.5. Integration by simple summation (pp. 267-268) | html | pdf |
- 11.2.5.1. Determination of the best background plane (p. 267) | html | pdf |
- 11.2.5.1.1. Outlier rejection (p. 267) | html | pdf |
- 11.2.5.2. Evaluating the integrated intensity and standard deviation (pp. 267-268) | html | pdf |
- 11.2.5.3. The effect of instrument or detector errors (p. 268) | html | pdf |
- 11.2.6. Integration by profile fitting (pp. 268-271) | html | pdf |
- 11.2.6.1. Forming the standard profiles (pp. 268-269) | html | pdf |
- 11.2.6.2. Evaluation of the profile-fitted intensity (p. 269) | html | pdf |
- 11.2.6.3. Modifications for very close spots (pp. 269-270) | html | pdf |
- 11.2.6.4. Profile fitting very strong reflections (p. 270) | html | pdf |
- 11.2.6.5. Profile fitting very weak reflections (p. 270) | html | pdf |
- 11.2.6.6. Improvement provided by profile fitting weak reflections (p. 270) | html | pdf |
- 11.2.6.7. Other benefits of profile fitting (pp. 270-271) | html | pdf |
- 11.2.6.7.1. Incompletely resolved spots (p. 270) | html | pdf |
- 11.2.6.7.2. Elimination of peak pixel outliers (pp. 270-271) | html | pdf |
- 11.2.6.7.3. Estimation of overloaded reflections (p. 271) | html | pdf |
- 11.2.6.8. Profile fitting partially recorded reflections (p. 271) | html | pdf |
- 11.2.6.9. Systematic errors in profile-fitted intensities (p. 271) | html | pdf |
- References
| html | pdf |
- Figures
- 11.3. Integration, scaling, space-group assignment and post refinement (pp. 272-281) | html | pdf | chapter contents |
- 11.3.1. Introduction (p. 272) | html | pdf |
- 11.3.2. Modelling rotation images (pp. 272-275) | html | pdf |
- 11.3.2.1. Coordinate systems and parameters (p. 272) | html | pdf |
- 11.3.2.2. Spot prediction (pp. 272-273) | html | pdf |
- 11.3.2.3. Standard spot shape (p. 273) | html | pdf |
- 11.3.2.4. Spot centroids and partiality (p. 273) | html | pdf |
- 11.3.2.5. Localizing diffraction spots (pp. 273-274) | html | pdf |
- 11.3.2.6. Basis extraction (p. 274) | html | pdf |
- 11.3.2.7. Indexing (pp. 274-275) | html | pdf |
- 11.3.2.8. Refinement (p. 275) | html | pdf |
- 11.3.3. Integration (pp. 275-277) | html | pdf |
- 11.3.3.1. Reflection mask (pp. 275-276) | html | pdf |
- 11.3.3.2. Background (p. 276) | html | pdf |
- 11.3.3.3. Standard profiles (p. 276) | html | pdf |
- 11.3.3.4. Intensity estimation (pp. 276-277) | html | pdf |
- 11.3.4. Scaling (p. 277) | html | pdf |
- 11.3.5. Post refinement (pp. 277-278) | html | pdf |
- 11.3.6. Space-group assignment (pp. 278-280) | html | pdf |
- 11.3.6.1. Determination of the Bravais lattice (pp. 279-280) | html | pdf |
- 11.3.6.2. Finding possible space groups (p. 280) | html | pdf |
- References
| html | pdf |
- Tables
- Table 11.3.6.1. Rating of lattice types implied by a given reduced cell (p. 279) | html | pdf |
- Table 11.3.6.2. Identification of possible space groups (p. 280) | html | pdf |
- 11.4. DENZO and SCALEPACK (pp. 282-295) | html | pdf | chapter contents |
- 11.4.1. Introduction (p. 282) | html | pdf |
- 11.4.2. Diffraction from a perfect crystal lattice (pp. 282-283) | html | pdf |
- 11.4.3. Autoindexing (pp. 283-284) | html | pdf |
- 11.4.3.1. Lattice symmetry (pp. 283-284) | html | pdf |
- 11.4.3.2. Lattice pseudosymmetry (p. 284) | html | pdf |
- 11.4.3.3. Data-collection requirements (p. 284) | html | pdf |
- 11.4.3.4. Misindexing (p. 284) | html | pdf |
- 11.4.3.5. Twins (p. 284) | html | pdf |
- 11.4.4. Coordinate systems (pp. 284-285) | html | pdf |
- 11.4.4.1. Beam–gravity (p. 284) | html | pdf |
- 11.4.4.2. Data (p. 284) | html | pdf |
- 11.4.4.3. Beam–spindle (pp. 284-285) | html | pdf |
- 11.4.4.4. Beam–2θ (p. 285) | html | pdf |
- 11.4.5. Experimental assumptions (pp. 285-288) | html | pdf |
- 11.4.5.1. Crystal diffraction (p. 286) | html | pdf |
- 11.4.5.2. Data model (p. 286) | html | pdf |
- 11.4.5.3. Data-model refinement (pp. 286-287) | html | pdf |
- 11.4.5.4. Correlation between parameters (p. 287) | html | pdf |
- 11.4.5.5. Single- and multiframe refinement (p. 287) | html | pdf |
- 11.4.5.6. Active area (p. 287) | html | pdf |
- 11.4.5.7. Flood field (p. 287) | html | pdf |
- 11.4.5.8. Absolute configuration (p. 287) | html | pdf |
- 11.4.5.9. Detector goniostat (p. 287) | html | pdf |
- 11.4.5.10. Crystal goniostat (pp. 287-288) | html | pdf |
- 11.4.5.11. Crystal orthogonalization convention (p. 288) | html | pdf |
- 11.4.5.12. Refinement and calibration (p. 288) | html | pdf |
- 11.4.6. Prediction of the diffraction pattern (pp. 288-289) | html | pdf |
- 11.4.6.1. Refinement of crystal and detector parameters (p. 288) | html | pdf |
- 11.4.6.2. Bragg's law for non-ideal conditions: mosaicity (pp. 288-289) | html | pdf |
- 11.4.6.3. Detector distortions (p. 289) | html | pdf |
- 11.4.7. Integration of diffraction maxima by profile fitting (p. 289) | html | pdf |
- 11.4.8. Scaling – multiplicative corrections (pp. 289-291) | html | pdf |
- 11.4.8.1. Global and local scaling (p. 290) | html | pdf |
- 11.4.8.2. Stabilization of scaling parameters based on prior knowledge (pp. 290-291) | html | pdf |
- 11.4.9. Global refinement or post refinement (p. 291) | html | pdf |
- 11.4.10. Merging – assessment of the error model and signal magnitudes in the data (pp. 291-292) | html | pdf |
- 11.4.10.1. Estimation of random errors (p. 291) | html | pdf |
- 11.4.10.2. Estimation of multiplicative errors (p. 291) | html | pdf |
- 11.4.10.3. Merging and signal validation (p. 292) | html | pdf |
- 11.4.11. Detector diagnostics (p. 292) | html | pdf |
- 11.4.12. HKL-2000 and HKL-3000 (pp. 292-294) | html | pdf |
- 11.4.13. Final note (p. 294) | html | pdf |
- References
| html | pdf |
- Figures
- 11.5. The use of partially recorded reflections for post refinement, scaling and averaging X-ray diffraction data (pp. 296-303) | html | pdf | chapter contents |
- 11.5.1. Introduction (p. 296) | html | pdf |
- 11.5.2. Generalization of the Hamilton, Rollett and Sparks equations to take into account partial reflections (pp. 296-297) | html | pdf |
- 11.5.3. Selection of reflections useful for scaling (p. 297) | html | pdf |
- 11.5.4. Restraints and constraints (pp. 297-298) | html | pdf |
- 11.5.5. Generalization of the procedure for averaging reflection intensities (p. 298) | html | pdf |
- 11.5.6. Estimating the quality of data scaling and averaging (p. 298) | html | pdf |
- 11.5.7. Experimental results (pp. 298-301) | html | pdf |
- 11.5.7.1. Variation of scale factors versus frame number (pp. 298-299) | html | pdf |
- 11.5.7.2. R factor as a function of `sum-of-partialities' (method 1) (pp. 299-300) | html | pdf |
- 11.5.7.3. Statistics for rejecting reflections and data quality as a function of frame number (p. 300) | html | pdf |
- 11.5.7.4. Observed versus calculated partiality (p. 300) | html | pdf |
- 11.5.7.5. Anisotropic mosaicity (p. 300) | html | pdf |
- 11.5.7.6. Anomalous dispersion (pp. 300-301) | html | pdf |
- 11.5.8. Conclusions (p. 301) | html | pdf |
- Appendix 11.5.1. Partiality model (Rossmann, 1979; Rossmann et al., 1979) (pp. 301-302) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 11.5.3.1. Hierarchy of criteria for selecting reflections for scaling and averaging procedures (p. 297) | html | pdf |
- 11.6. XDS (pp. 304-310) | html | pdf | chapter contents |
- 11.6.1. Functional specification (p. 304) | html | pdf |
- 11.6.2. XDS (pp. 304-308) | html | pdf |
- 11.6.2.1. XYCORR (p. 304) | html | pdf |
- 11.6.2.2. INIT (pp. 304-305) | html | pdf |
- 11.6.2.3. COLSPOT (p. 305) | html | pdf |
- 11.6.2.4. IDXREF (pp. 305-306) | html | pdf |
- 11.6.2.5. DEFPIX (p. 306) | html | pdf |
- 11.6.2.6. XPLAN (pp. 306-307) | html | pdf |
- 11.6.2.7. INTEGRATE (p. 307) | html | pdf |
- 11.6.2.8. CORRECT (pp. 307-308) | html | pdf |
- 11.6.3. XSCALE (pp. 308-309) | html | pdf |
- 11.6.4. XDSCONV (p. 309) | html | pdf |
- 11.6.5. Parallelization of XDS (pp. 309-310) | html | pdf |
- 11.6.6. Availability (p. 310) | html | pdf |
- References
| html | pdf |
- Tables
- Table 11.6.2.1. Information exchange between program steps of XDS (p. 305) | html | pdf |
- 11.7. Detecting twinning by merohedry (pp. 311-316) | html | pdf | chapter contents |
- 11.7.1. Introduction (p. 311) | html | pdf |
- 11.7.2. Twinning by merohedry – considerations of lattice symmetry (pp. 311-312) | html | pdf |
- 11.7.3. Considerations of length scale and effects in reciprocal space (p. 312) | html | pdf |
- 11.7.4. Extent of twinning: the twin fraction (p. 312) | html | pdf |
- 11.7.5. Indications of twinning (pp. 312-313) | html | pdf |
- 11.7.6. Twinning tests based on overall intensity statistics (pp. 313-314) | html | pdf |
- 11.7.7. Tests for partial twinning based on comparison of twin-related reflections (pp. 314-315) | html | pdf |
- 11.7.8. Higher forms of twinning (p. 315) | html | pdf |
- 11.7.9. Other kinds of disorder (p. 315) | html | pdf |
- 11.7.10. Summary (p. 315) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 11.7.2.1. Symmetries in which twinning by merohedry can occur in biological macromolecules (p. 312) | html | pdf |
- Table 11.7.6.1. Twinning statistics for acentric intensity data from a crystal specimen with different numbers of twin domain orientations (n) (p. 314) | html | pdf |
- Isomorphous replacement
- 12.1. The preparation of heavy-atom derivatives of protein crystals for use in multiple isomorphous replacement and anomalous scattering (pp. 317-326) | html | pdf | chapter contents |
- 12.1.1. Introduction (p. 317) | html | pdf |
- 12.1.2. Heavy-atom data bank (pp. 317-318) | html | pdf |
- 12.1.3. Properties of heavy-atom compounds and their complexes (pp. 318-320) | html | pdf |
- 12.1.3.1. Stability (p. 318) | html | pdf |
- 12.1.3.2. Lability (p. 318) | html | pdf |
- 12.1.3.3. Oxidation state of metal ions in protein crystals (p. 318) | html | pdf |
- 12.1.3.4. Effect of pH (pp. 318-319) | html | pdf |
- 12.1.3.5. Effect of precipitants and buffers on heavy-atom binding (p. 319) | html | pdf |
- 12.1.3.6. Solubility of heavy-atom compounds (pp. 319-320) | html | pdf |
- 12.1.3.7. Effect of concentration, time of soak and temperature on heavy-atom binding (p. 320) | html | pdf |
- 12.1.4. Amino acids as ligands (pp. 320-321) | html | pdf |
- 12.1.5. Protein chemistry of heavy-atom reagents (pp. 321-324) | html | pdf |
- 12.1.5.1. Hard cations (p. 321) | html | pdf |
- 12.1.5.2. Thallium and lead ions (p. 321) | html | pdf |
- 12.1.5.3. B-metal reagents (pp. 321-323) | html | pdf |
- 12.1.5.4. Electrostatic binding of heavy-atom anions (p. 323) | html | pdf |
- 12.1.5.5. Hydrophobic heavy-atom reagents (pp. 323-324) | html | pdf |
- 12.1.5.6. Iodine (p. 324) | html | pdf |
- 12.1.5.7. Polynuclear reagents (p. 324) | html | pdf |
- 12.1.6. Metal-ion replacement in metalloproteins (p. 324) | html | pdf |
- 12.1.7. Analogues of amino acids (pp. 324-325) | html | pdf |
- 12.1.8. Use of the heavy-atom data bank to select derivatives (p. 325) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 12.1.3.1. Useful pH ranges of some heavy-atom reagents derived from the heavy-atom data bank (p. 319) | html | pdf |
- Table 12.1.5.1. The 23 most commonly used heavy-atom reagents (p. 321) | html | pdf |
- Table 12.1.5.2. The five most popular uranium derivatives (p. 321) | html | pdf |
- Table 12.1.5.3. The five most popular mercury derivatives (p. 322) | html | pdf |
- Table 12.1.5.4. The five most popular platinum derivatives (p. 322) | html | pdf |
- 12.2. Locating heavy-atom sites (pp. 327-332) | html | pdf | chapter contents |
- 12.2.1. The origin of the phase problem (pp. 327-328) | html | pdf |
- 12.2.2. The Patterson function (pp. 328-329) | html | pdf |
- 12.2.3. The difference Fourier (p. 329) | html | pdf |
- 12.2.4. Reality (pp. 329-330) | html | pdf |
- 12.2.4.1. Treatment of errors (pp. 329-330) | html | pdf |
- 12.2.4.2. Automated search procedures (p. 330) | html | pdf |
- 12.2.5. Special complications (pp. 330-331) | html | pdf |
- 12.2.5.1. Lack of isomorphism (pp. 330-331) | html | pdf |
- 12.2.5.2. Space-group problems (p. 331) | html | pdf |
- 12.2.5.3. High levels of substitution; noncrystallographic symmetry (p. 331) | html | pdf |
- References
| html | pdf |
- Figures
- Molecular replacement
- 13.1. Noncrystallographic symmetry (pp. 333-339) | html | pdf | chapter contents |
- 13.1.1. Introduction (p. 333) | html | pdf |
- 13.1.2. Definition of noncrystallographic symmetry (p. 333) | html | pdf |
- 13.1.2.1. Standard noncrystallographic symmetry (p. 333) | html | pdf |
- 13.1.2.2. Generalized noncrystallographic symmetry (p. 333) | html | pdf |
- 13.1.2.3. Exploitation of noncrystallographic symmetry (p. 333) | html | pdf |
- 13.1.3. Use of the Patterson function to interpret noncrystallographic symmetry (pp. 333-335) | html | pdf |
- 13.1.3.1. Rotation operations (pp. 333-334) | html | pdf |
- 13.1.3.2. Translation operations (pp. 334-335) | html | pdf |
- 13.1.4. Interpretation of generalized noncrystallographic symmetry where the molecular structure is partially known (p. 335) | html | pdf |
- 13.1.4.1. The cross-rotation function (p. 335) | html | pdf |
- 13.1.4.2. The cross-translation function (p. 335) | html | pdf |
- 13.1.4.3. Structure determination (p. 335) | html | pdf |
- 13.1.5. The power of noncrystallographic symmetry in structure analysis (pp. 336-338) | html | pdf |
- 13.1.5.1. Relevant parameters: standard case (p. 336) | html | pdf |
- 13.1.5.2. Information gain from ideal noncrystallographic symmetry (pp. 336-337) | html | pdf |
- 13.1.5.3. Information gain in the non-ideal case (p. 337) | html | pdf |
- 13.1.5.4. Relevant parameters: generalized case (p. 337) | html | pdf |
- 13.1.5.5. Noncrystallographic symmetry in atomic coordinate refinement (pp. 337-338) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 13.1.2.1. Noncrystallographic symmetry in crystals (p. 333) | html | pdf |
- Table 13.1.4.1. Structure determination using noncrystallographic symmetry (p. 335) | html | pdf |
- 13.2. Rotation functions (pp. 340-346) | html | pdf | chapter contents |
- 13.2.1. Overview (p. 340) | html | pdf |
- 13.2.2. Rotations in three-dimensional Euclidean space (pp. 340-341) | html | pdf |
- 13.2.2.1. The metric of the rotation group (p. 341) | html | pdf |
- 13.2.3. The rotation function (pp. 341-343) | html | pdf |
- 13.2.3.1. Computing the rotation function (p. 342) | html | pdf |
- 13.2.3.2. Plotting and sampling the rotation function (pp. 342-343) | html | pdf |
- 13.2.3.3. Strategies (p. 343) | html | pdf |
- 13.2.3.4. Symmetry properties of the rotation function (p. 343) | html | pdf |
- 13.2.4. The locked rotation function (pp. 343-344) | html | pdf |
- 13.2.5. Other rotation functions (p. 344) | html | pdf |
- 13.2.6. Concluding remarks (p. 344) | html | pdf |
- Appendix 13.2.1. Formulae for the derivation and computation of the fast rotation function (pp. 344-346) | html | pdf |
- References
| html | pdf |
- Figures
- 13.3. Translation functions (pp. 347-351) | html | pdf | chapter contents |
- 13.3.1. Introduction (p. 347) | html | pdf |
- 13.3.2. R-factor and correlation-coefficient translation functions (pp. 347-348) | html | pdf |
- 13.3.3. Patterson-correlation translation function (p. 348) | html | pdf |
- 13.3.4. Phased translation function (p. 349) | html | pdf |
- 13.3.5. Packing check in translation functions (p. 349) | html | pdf |
- 13.3.6. The unique region of a translation function (the Cheshire group) (p. 349) | html | pdf |
- 13.3.7. Combined molecular replacement (pp. 349-350) | html | pdf |
- 13.3.8. The locked translation function (p. 350) | html | pdf |
- 13.3.9. Miscellaneous translation functions (p. 350) | html | pdf |
- References
| html | pdf |
- 13.4. Noncrystallographic symmetry averaging of electron density for molecular-replacement phase refinement and extension (pp. 352-363) | html | pdf | chapter contents |
- 13.4.1. Introduction (p. 352) | html | pdf |
- 13.4.2. Noncrystallographic symmetry (NCS) (pp. 352-354) | html | pdf |
- 13.4.3. Phase determination using NCS (p. 354) | html | pdf |
- 13.4.4. The p- and h-cells (pp. 354-355) | html | pdf |
- 13.4.5. Combining crystallographic and noncrystallographic symmetry (pp. 355-356) | html | pdf |
- 13.4.5.1. General considerations (p. 355) | html | pdf |
- 13.4.5.2. Averaging with the p-cell (pp. 355-356) | html | pdf |
- 13.4.5.3. Averaging the p-cell and placing the results into the h-cell (p. 356) | html | pdf |
- 13.4.6. Determining the molecular envelope (pp. 356-357) | html | pdf |
- 13.4.7. Finding the averaged density (pp. 357-358) | html | pdf |
- 13.4.8. Interpolation (p. 358) | html | pdf |
- 13.4.9. Combining different crystal forms (p. 358) | html | pdf |
- 13.4.10. Phase extension and refinement of the NCS parameters (p. 359) | html | pdf |
- 13.4.11. Convergence (pp. 359-360) | html | pdf |
- 13.4.12. Ab initio phasing starts (p. 360) | html | pdf |
- 13.4.13. Recent salient examples in low-symmetry cases: multidomain averaging and systematic applications of multiple-crystal-form averaging (pp. 360-361) | html | pdf |
- 13.4.14. Programs (p. 361) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 13.4.7.1. Mean root-mean-square scatter between noncrystallographically related points (p. 357) | html | pdf |
- 13.5. Molecular replacement with MOLREP (pp. 364-366) | html | pdf | chapter contents |
- 13.5.1. Introduction (p. 364) | html | pdf |
- 13.5.2. Program operation (p. 364) | html | pdf |
- 13.5.3. Preparation of the search model (p. 364) | html | pdf |
- 13.5.4. Preparation of the X-ray data (pp. 364-365) | html | pdf |
- 13.5.5. Rotational search (p. 365) | html | pdf |
- 13.5.6. Positional search (p. 365) | html | pdf |
- 13.5.7. Multi-copy search (pp. 365-366) | html | pdf |
- 13.5.8. Fitting the model into electron density (p. 366) | html | pdf |
- 13.5.9. Distribution (p. 366) | html | pdf |
- References
| html | pdf |
- Anomalous dispersion
- 14.1. Heavy-atom location and phase determination with single-wavelength diffraction data (pp. 367-372) | html | pdf | chapter contents |
- 14.1.1. Introduction (p. 367) | html | pdf |
- 14.1.2. The isomorphous-replacement method (pp. 367-368) | html | pdf |
- 14.1.3. The method of multiple isomorphous replacement (p. 368) | html | pdf |
- 14.1.4. The method of Blow & Crick (pp. 368-369) | html | pdf |
- 14.1.5. The best Fourier (p. 369) | html | pdf |
- 14.1.6. Anomalous scattering (p. 369) | html | pdf |
- 14.1.7. Theory of anomalous scattering (pp. 369-370) | html | pdf |
- 14.1.8. The phase probability distribution for anomalous scattering (pp. 370-371) | html | pdf |
- 14.1.9. Anomalous scattering without isomorphous replacement (p. 371) | html | pdf |
- 14.1.10. Location of heavy-atom sites (p. 371) | html | pdf |
- 14.1.11. Use of anomalous-scattering data in heavy-atom location (p. 371) | html | pdf |
- 14.1.12. Use of difference Fourier syntheses (p. 371) | html | pdf |
- 14.1.13. Single isomorphous replacement (pp. 371-372) | html | pdf |
- References
| html | pdf |
- Figures
- 14.2. Multiwavelength anomalous diffraction (pp. 373-378) | html | pdf | chapter contents |
- 14.2.1. Anomalous scattering factors (pp. 373-374) | html | pdf |
- 14.2.2. A phase equation for MAD (pp. 374-375) | html | pdf |
- 14.2.3. Diffraction ratios for estimating the MAD phasing signal (p. 375) | html | pdf |
- 14.2.4. Experimental considerations (pp. 375-376) | html | pdf |
- 14.2.5. Data handling (p. 376) | html | pdf |
- 14.2.6. Approaches to MAD phasing (pp. 376-377) | html | pdf |
- 14.2.7. Determination of the anomalous-scatterer partial structure (p. 377) | html | pdf |
- 14.2.8. General anomalous-scatterer labels for biological macromolecules (pp. 377-378) | html | pdf |
- References
| html | pdf |
- Figures
- 14.3. Automated MAD and MIR structure solution (pp. 379-383) | html | pdf | chapter contents |
- 14.3.1. Introduction (p. 379) | html | pdf |
- 14.3.2. MAD and MIR structure solution (p. 379) | html | pdf |
- 14.3.3. Decision making and structure solution (p. 379) | html | pdf |
- 14.3.4. The need for rapid refinement and phasing during automated structure solution (p. 379) | html | pdf |
- 14.3.5. Conversion of MAD data to a pseudo-SIRAS form (pp. 379-380) | html | pdf |
- 14.3.6. Scoring of trial heavy-atom solutions (pp. 380-381) | html | pdf |
- 14.3.7. Automated MIR and MAD structure determination (pp. 381-382) | html | pdf |
- 14.3.8. Generation of model X-ray data sets (p. 382) | html | pdf |
- 14.3.9. Conclusions (p. 382) | html | pdf |
- 14.3.10. Software availability (p. 382) | html | pdf |
- References
| html | pdf |
- Density modification and phase combination
- 15.1. Phase improvement by iterative density modification (pp. 385-400) | html | pdf | chapter contents |
- 15.1.1. Introduction (p. 385) | html | pdf |
- 15.1.2. Density-modification methods (pp. 385-393) | html | pdf |
- 15.1.2.1. Solvent flattening (pp. 385-388) | html | pdf |
- 15.1.2.1.1. Introduction (pp. 386-387) | html | pdf |
- 15.1.2.1.2. The automated convolution method for molecular-boundary identification (p. 387) | html | pdf |
- 15.1.2.1.3. The solvent-flattening procedure (p. 388) | html | pdf |
- 15.1.2.2. Histogram matching (pp. 388-390) | html | pdf |
- 15.1.2.2.1. Introduction (p. 388) | html | pdf |
- 15.1.2.2.2. The prediction of the ideal histogram (pp. 388-389) | html | pdf |
- 15.1.2.2.3. The process of histogram matching (pp. 389-390) | html | pdf |
- 15.1.2.2.4. Scaling the observed structure-factor amplitudes according to the ideal density histogram (p. 390) | html | pdf |
- 15.1.2.3. Averaging (pp. 390-392) | html | pdf |
- 15.1.2.3.1. Introduction (p. 390) | html | pdf |
- 15.1.2.3.2. The determination of noncrystallographic symmetry (pp. 390-391) | html | pdf |
- 15.1.2.3.3. The refinement of noncrystallographic symmetry (p. 391) | html | pdf |
- 15.1.2.3.4. The averaging of NCS-related molecules (pp. 391-392) | html | pdf |
- 15.1.2.4. Skeletonization (p. 392) | html | pdf |
- 15.1.2.5. Sayre's equation (p. 392) | html | pdf |
- 15.1.2.5.1. Sayre's equation in real and reciprocal space (p. 392) | html | pdf |
- 15.1.2.5.2. The application of Sayre's equation to macromolecules at non-atomic resolution – the θ() curve (p. 392) | html | pdf |
- 15.1.2.6. Atomization (pp. 392-393) | html | pdf |
- 15.1.3. Reciprocal-space interpretation of density modification (pp. 393-394) | html | pdf |
- 15.1.4. Phase combination (pp. 394-396) | html | pdf |
- 15.1.4.1. Sim and weighting (pp. 394-395) | html | pdf |
- 15.1.4.2. Reflection omit (p. 395) | html | pdf |
- 15.1.4.3. The γ correction and solvent flipping (p. 395) | html | pdf |
- 15.1.4.4. Resolution extrapolation (pp. 395-396) | html | pdf |
- 15.1.5. Combining constraints for phase improvement (pp. 396-398) | html | pdf |
- 15.1.5.1. The system of nonlinear constraint equations (p. 396) | html | pdf |
- 15.1.5.2. Least-squares solution to the system of nonlinear constraint equations (pp. 396-398) | html | pdf |
- 15.1.5.2.1. The conjugate-gradient method (p. 397) | html | pdf |
- 15.1.5.2.2. The full-matrix solution (p. 397) | html | pdf |
- 15.1.5.2.3. The diagonal approximation (pp. 397-398) | html | pdf |
- 15.1.6. Statistical density-modification methods (p. 398) | html | pdf |
- 15.1.7. Example (pp. 398-399) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 15.1.2.1. Constraints used in density modification (p. 386) | html | pdf |
- 15.2. Model phases: probabilities, bias and maps (pp. 401-406) | html | pdf | chapter contents |
- 15.2.1. Introduction (p. 401) | html | pdf |
- 15.2.2. Model bias: importance of phase (p. 401) | html | pdf |
- 15.2.2.1. Parseval's theorem (p. 401) | html | pdf |
- 15.2.3. Structure-factor probability relationships (pp. 401-403) | html | pdf |
- 15.2.3.1. Wilson and Sim structure-factor distributions in P1 (p. 402) | html | pdf |
- 15.2.3.2. Probability distributions for variable coordinate errors (pp. 402-403) | html | pdf |
- 15.2.3.3. General treatment of the structure-factor distribution (p. 403) | html | pdf |
- 15.2.3.4. Estimating (p. 403) | html | pdf |
- 15.2.3.5. Accounting for measurement errors (p. 403) | html | pdf |
- 15.2.4. Figure-of-merit weighting for model phases (p. 404) | html | pdf |
- 15.2.5. Map coefficients to reduce model bias (p. 404) | html | pdf |
- 15.2.5.1. Model bias in figure-of-merit weighted maps (p. 404) | html | pdf |
- 15.2.5.2. Model bias in combined phase maps (p. 404) | html | pdf |
- 15.2.6. Estimation of overall coordinate error (pp. 404-405) | html | pdf |
- 15.2.7. Difference-map coefficients (p. 405) | html | pdf |
- 15.2.8. Refinement bias (p. 405) | html | pdf |
- References
| html | pdf |
- Figures
- 15.3. DM/DMMULTI software for phase improvement by density modification (pp. 407-412) | html | pdf | chapter contents |
- 15.3.1. Introduction (p. 407) | html | pdf |
- 15.3.2. Program operation (p. 407) | html | pdf |
- 15.3.3. Preparation of input data (pp. 407-408) | html | pdf |
- 15.3.4. Choice of modes (pp. 408-410) | html | pdf |
- 15.3.4.1. Density-modification modes (pp. 408-409) | html | pdf |
- 15.3.4.2. Phase-combination modes (p. 409) | html | pdf |
- 15.3.4.3. Phase-extension schemes (pp. 409-410) | html | pdf |
- 15.3.5. Code description (pp. 410-412) | html | pdf |
- 15.3.5.1. Scaling (pp. 410-411) | html | pdf |
- 15.3.5.2. Solvent-mask determination (p. 411) | html | pdf |
- 15.3.5.3. Averaging-mask determination (p. 411) | html | pdf |
- 15.3.5.4. Fourier transforms (p. 411) | html | pdf |
- 15.3.5.5. Histogram matching (p. 411) | html | pdf |
- 15.3.5.6. Averaging (pp. 411-412) | html | pdf |
- 15.3.5.7. Multi-crystal averaging (p. 412) | html | pdf |
- References
| html | pdf |
- Figures
- Direct methods
- 16.1. Ab initio phasing (pp. 413-432) | html | pdf | chapter contents |
- 16.1.1. Introduction (pp. 413-415) | html | pdf |
- 16.1.1.1. Data resolution (pp. 413-414) | html | pdf |
- 16.1.1.2. Data completeness (p. 414) | html | pdf |
- 16.1.1.3. Summary (pp. 414-415) | html | pdf |
- 16.1.2. Normalized structure-factor magnitudes (pp. 415-416) | html | pdf |
- 16.1.2.1. SIR differences (p. 416) | html | pdf |
- 16.1.2.2. SAD differences (p. 416) | html | pdf |
- 16.1.2.3. Difference intensities and direct methods (p. 416) | html | pdf |
- 16.1.3. Starting the phasing process (pp. 416-417) | html | pdf |
- 16.1.3.1. Structure invariants (pp. 416-417) | html | pdf |
- 16.1.3.2. `Multisolution' methods and trial structures (p. 417) | html | pdf |
- 16.1.4. Reciprocal-space phase refinement or expansion (shaking) (pp. 417-418) | html | pdf |
- 16.1.4.1. The tangent formula (p. 417) | html | pdf |
- 16.1.4.2. The minimal function (pp. 417-418) | html | pdf |
- 16.1.4.3. Parameter shift (p. 418) | html | pdf |
- 16.1.5. Real-space constraints (baking) (pp. 418-419) | html | pdf |
- 16.1.5.1. Simple peak picking (p. 418) | html | pdf |
- 16.1.5.2. Iterative peaklist optimization (pp. 418-419) | html | pdf |
- 16.1.5.3. Random omit maps (p. 419) | html | pdf |
- 16.1.6. Fourier refinement (p. 419) | html | pdf |
- 16.1.7. Resolution enhancement: the `free lunch' algorithm (p. 419) | html | pdf |
- 16.1.8. Utilizing Pattersons for better starts (pp. 419-420) | html | pdf |
- 16.1.9. Shake-and-Bake: an analysis of a dual-space method in action (pp. 420-422) | html | pdf |
- 16.1.9.1. Flowchart and program comparison (pp. 420-421) | html | pdf |
- 16.1.9.2. Parameters and procedures (p. 421) | html | pdf |
- 16.1.9.3. Recognizing solutions (pp. 421-422) | html | pdf |
- 16.1.10. Applying dual-space programs successfully (pp. 422-425) | html | pdf |
- 16.1.10.1. Avoiding false minima (pp. 422-423) | html | pdf |
- 16.1.10.2. Choosing a refinement strategy (pp. 423-424) | html | pdf |
- 16.1.10.3. Expansion to P1 (pp. 424-425) | html | pdf |
- 16.1.10.4. Substructure applications (p. 425) | html | pdf |
- 16.1.11. Substructure solution for native sulfurs and halide soaks (pp. 425-426) | html | pdf |
- 16.1.12. Computer programs for dual-space phasing (pp. 426-429) | html | pdf |
- 16.1.12.1. ACORN (pp. 426-427) | html | pdf |
- 16.1.12.2. IL MILIONE (pp. 427-428) | html | pdf |
- 16.1.12.3. SHELX (p. 428) | html | pdf |
- 16.1.12.4. SnB and BnP (p. 428) | html | pdf |
- 16.1.12.5. HySS (p. 428) | html | pdf |
- 16.1.12.6. SUPERFLIP: charge flipping (pp. 428-429) | html | pdf |
- 16.1.12.7. CRUNCH2 – Karle–Hauptman determinants (p. 429) | html | pdf |
- 16.1.13. Conclusions and the grand challenge (p. 429) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 16.1.1.1. Success rates for three P1 structures illustrate the importance of using complete data to the highest possible resolution (p. 415) | html | pdf |
- Table 16.1.1.2. Improving success rates by `completing' the vancomycin data (p. 415) | html | pdf |
- Table 16.1.2.1. Theoretical values pertaining to 's (p. 415) | html | pdf |
- Table 16.1.8.1. Overall success rates for full structure solution for hirustasin using different two-atom search vectors chosen from the Patterson peak list (p. 420) | html | pdf |
- Table 16.1.9.1. Recommended parameter values for the SnB program (p. 421) | html | pdf |
- Table 16.1.10.1. Some large structures solved by the Shake-and-Bake method (p. 423) | html | pdf |
- 16.2. The maximum-entropy method (pp. 433-436) | html | pdf | chapter contents |
- 16.2.1. Introduction (p. 433) | html | pdf |
- 16.2.2. The maximum-entropy principle in a general context (pp. 433-435) | html | pdf |
- 16.2.2.1. Sources of random symbols and the notion of source entropy (p. 433) | html | pdf |
- 16.2.2.2. The meaning of entropy: Shannon's theorems (pp. 433-434) | html | pdf |
- 16.2.2.3. Jaynes' maximum-entropy principle (pp. 434-433) | html | pdf |
- 16.2.2.4. Jaynes' maximum-entropy formalism (pp. 434-435) | html | pdf |
- 16.2.3. Adaptation to crystallography (pp. 435-436) | html | pdf |
- 16.2.3.1. The random-atom model (p. 435) | html | pdf |
- 16.2.3.2. Conventional direct methods and their limitations (p. 435) | html | pdf |
- 16.2.3.3. The notion of recentring and the maximum-entropy criterion (p. 435) | html | pdf |
- 16.2.3.4. The crystallographic maximum-entropy formalism (p. 435) | html | pdf |
- 16.2.3.5. Connection with the saddlepoint method (pp. 435-436) | html | pdf |
- References
| html | pdf |
- 16.3. Ab initio phasing of low-resolution Fourier syntheses (pp. 437-442) | html | pdf | chapter contents |
- 16.3.1. Introduction (p. 437) | html | pdf |
- 16.3.2. General features of low-resolution images (p. 437) | html | pdf |
- 16.3.3. Low-resolution phasing (pp. 437-438) | html | pdf |
- 16.3.4. Phase generation and selection (pp. 438-439) | html | pdf |
- 16.3.4.1. Generation of the phase sets (p. 438) | html | pdf |
- 16.3.4.2. Search targets – overview (p. 438) | html | pdf |
- 16.3.4.3. Histogram of a Fourier synthesis (p. 438) | html | pdf |
- 16.3.4.4. Map connectivity (p. 438) | html | pdf |
- 16.3.4.5. Few-atoms model approach (p. 439) | html | pdf |
- 16.3.4.6. Likelihood-based selection (p. 439) | html | pdf |
- 16.3.4.7. Binary functions (p. 439) | html | pdf |
- 16.3.4.8. Common features of selection criteria (p. 439) | html | pdf |
- 16.3.5. Processing of the output (pp. 439-441) | html | pdf |
- 16.3.5.1. Formal comparison of phase sets (pp. 439-440) | html | pdf |
- 16.3.5.2. Phase ambiguity and alignment of phase sets (p. 440) | html | pdf |
- 16.3.5.3. Multiple alignment and `central' phase set (p. 440) | html | pdf |
- 16.3.5.4. Phase averaging and assignment of the probability distribution (pp. 440-441) | html | pdf |
- 16.3.5.5. Cluster analysis (p. 441) | html | pdf |
- 16.3.6. Conclusions and examples (p. 441) | html | pdf |
- References
| html | pdf |
- Model building and computer graphics
- 17.1. Macromolecular model building and validation using Coot (pp. 443-447) | html | pdf | chapter contents |
- 17.1.1. Introduction (p. 443) | html | pdf |
- 17.1.2. Model building (pp. 443-445) | html | pdf |
- 17.1.2.1. Tools for general model building (pp. 443-444) | html | pdf |
- 17.1.2.1.1. Cα baton mode (p. 443) | html | pdf |
- 17.1.2.1.2. Find secondary structure (pp. 443-444) | html | pdf |
- 17.1.2.1.3. Place helix here and Place strand here (p. 444) | html | pdf |
- 17.1.2.1.4. Find ligands (p. 444) | html | pdf |
- 17.1.2.2. Rebuilding and refinement (p. 444) | html | pdf |
- 17.1.2.3. Tools for moving existing atoms (pp. 444-445) | html | pdf |
- 17.1.2.3.1. Real-space refine zone (p. 444) | html | pdf |
- 17.1.2.3.2. Sphere refinement (p. 444) | html | pdf |
- 17.1.2.3.3. Ramachandran restraints (p. 444) | html | pdf |
- 17.1.2.3.4. Rotamer tools (pp. 444-445) | html | pdf |
- 17.1.2.3.5. Torsion editing (p. 445) | html | pdf |
- 17.1.2.4. Tools for adding atoms to the model (p. 445) | html | pdf |
- 17.1.2.4.1. Find waters (p. 445) | html | pdf |
- 17.1.2.4.2. Add terminal residue (p. 445) | html | pdf |
- 17.1.2.5. Tools for handling noncrystallographic symmetry (NCS) (p. 445) | html | pdf |
- 17.1.3. Validation (pp. 445-446) | html | pdf |
- 17.1.3.1. Ramachandran plot (p. 446) | html | pdf |
- 17.1.3.2. Geometry analysis (p. 446) | html | pdf |
- 17.1.3.3. Peptide analysis (p. 446) | html | pdf |
- 17.1.3.4. Rotamer analysis (p. 446) | html | pdf |
- 17.1.3.5. Density-fit analysis (p. 446) | html | pdf |
- 17.1.4. Scripting (p. 446) | html | pdf |
- 17.1.5. Discussion (p. 446) | html | pdf |
- References
| html | pdf |
- Figures
- 17.2. Molecular graphics and animation (pp. 448-458) | html | pdf | chapter contents |
- 17.2.1. Introduction (p. 448) | html | pdf |
- 17.2.2. Background – the evolution of molecular graphics hardware and software (pp. 448-449) | html | pdf |
- 17.2.3. Representation and visualization of molecular data and models (pp. 449-454) | html | pdf |
- 17.2.3.1. Geometric representation (pp. 450-452) | html | pdf |
- 17.2.3.2. Volumetric representation (pp. 452-454) | html | pdf |
- 17.2.3.3. Information visualization (p. 454) | html | pdf |
- 17.2.4. Presentation graphics (pp. 454-457) | html | pdf |
- 17.2.4.1. Illustration (pp. 455-456) | html | pdf |
- 17.2.4.2. Animation (p. 456) | html | pdf |
- 17.2.4.3. The return of physical models (pp. 456-457) | html | pdf |
- 17.2.5. Looking ahead (p. 457) | html | pdf |
- References
| html | pdf |
- Figures
- Refinement
- 18.1. Introduction to refinement (pp. 459-465) | html | pdf | chapter contents |
- 18.1.1. Overview (p. 459) | html | pdf |
- 18.1.2. Background (p. 459) | html | pdf |
- 18.1.3. Objectives (p. 459) | html | pdf |
- 18.1.4. Least squares and maximum likelihood (p. 460) | html | pdf |
- 18.1.5. Optimization (p. 460) | html | pdf |
- 18.1.6. Data (p. 460) | html | pdf |
- 18.1.7. Models (pp. 461-462) | html | pdf |
- 18.1.8. Optimization methods (pp. 462-463) | html | pdf |
- 18.1.8.1. Solving the refinement equations (pp. 462-463) | html | pdf |
- 18.1.8.2. Normal equations (p. 463) | html | pdf |
- 18.1.8.3. Choice of optimization method (p. 463) | html | pdf |
- 18.1.8.4. Singularity in refinement (p. 463) | html | pdf |
- 18.1.9. Evaluation of the model (p. 464) | html | pdf |
- 18.1.9.1. Examination of outliers in the model (p. 464) | html | pdf |
- 18.1.9.2. Examination of model electron density (p. 464) | html | pdf |
- 18.1.9.3. R and Rfree (p. 464) | html | pdf |
- 18.1.10. Conclusion (p. 464) | html | pdf |
- References
| html | pdf |
- 18.2. Enhanced macromolecular refinement by simulated annealing (pp. 466-473) | html | pdf | chapter contents |
- 18.2.1. Introduction (p. 466) | html | pdf |
- 18.2.2. Cross validation (pp. 466-467) | html | pdf |
- 18.2.3. The target function (pp. 467-468) | html | pdf |
- 18.2.3.1. X-ray diffraction data versus model (pp. 467-468) | html | pdf |
- 18.2.3.2. A priori chemical information (p. 468) | html | pdf |
- 18.2.4. Searching conformational space (pp. 468-470) | html | pdf |
- 18.2.4.1. Molecular dynamics (p. 469) | html | pdf |
- 18.2.4.2. Temperature control (pp. 469-470) | html | pdf |
- 18.2.4.3. Annealing schedules (p. 470) | html | pdf |
- 18.2.4.4. An intuitive explanation of simulated annealing (p. 470) | html | pdf |
- 18.2.5. Examples (pp. 470-471) | html | pdf |
- 18.2.6. Multi-start refinement and structure-factor averaging (p. 471) | html | pdf |
- 18.2.7. Ensemble models (pp. 471-472) | html | pdf |
- 18.2.8. Conclusions (p. 472) | html | pdf |
- References
| html | pdf |
- Figures
- 18.3. Structure quality and target parameters (pp. 474-484) | html | pdf | chapter contents |
- 18.3.1. Purpose of restraints (p. 474) | html | pdf |
- 18.3.1.1. Utility of restraints: protein/special geometries (p. 474) | html | pdf |
- 18.3.1.2. Risk of restraints: bias, lack of cross validation (p. 474) | html | pdf |
- 18.3.2. Formulation of refinement restraints (pp. 475-483) | html | pdf |
- 18.3.2.1. Choice of properties for restraint (p. 475) | html | pdf |
- 18.3.2.2. Simple derivation of force constants from parameter distributions (pp. 475-477) | html | pdf |
- 18.3.2.2.1. Clustering (pp. 475-477) | html | pdf |
- 18.3.2.2.2. Treatment of outliers (p. 477) | html | pdf |
- 18.3.2.3. Bonds and angles (pp. 477-481) | html | pdf |
- 18.3.2.3.1. Peptide parameters: proline, glycine, alanine and CB substitution (pp. 477-478) | html | pdf |
- 18.3.2.3.2. Aromatic residues: tryptophan, phenylalanine, tyrosine, histidine (pp. 480-481) | html | pdf |
- 18.3.2.3.3. Aliphatic residues: leucine, isoleucine, valine (p. 481) | html | pdf |
- 18.3.2.3.4. Neutral polar residues: serine, threonine, glutamine, asparagine (p. 481) | html | pdf |
- 18.3.2.3.5. Acidic residues: glutamate, aspartate (p. 481) | html | pdf |
- 18.3.2.3.6. Basic residues: arginine, lysine (p. 481) | html | pdf |
- 18.3.2.3.7. Sulfur-containing residues: methionine, cysteine, disulfides (p. 481) | html | pdf |
- 18.3.2.4. Planarity restraints (pp. 481-482) | html | pdf |
- 18.3.2.5. Torsion angles (p. 482) | html | pdf |
- 18.3.2.6. Non-bonded interactions (p. 482) | html | pdf |
- 18.3.2.7. Effects of hydrogen atoms in parameterization (p. 482) | html | pdf |
- 18.3.2.8. Special geometries: cofactors, ligands, metals etc. (pp. 482-483) | html | pdf |
- 18.3.2.9. Addition of tailored information sources (p. 483) | html | pdf |
- 18.3.3. Strategy of application during building/refinement (p. 483) | html | pdf |
- 18.3.3.1. Confidence in restraints versus information from diffraction (p. 483) | html | pdf |
- 18.3.4. Future perspectives (p. 483) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.3.2.1. Bond lengths of standard amino-acid side chains (pp. 476-477) | html | pdf |
- Table 18.3.2.2. Bond angles of standard amino-acid side chains (pp. 479-480) | html | pdf |
- Table 18.3.2.3. Bond lengths (Å) and angles (°) of peptide backbone fragments (p. 482) | html | pdf |
- 18.4. Refinement at atomic resolution (pp. 485-498) | html | pdf | chapter contents |
- 18.4.1. The atomic model and a definition of atomic resolution (pp. 485-487) | html | pdf |
- 18.4.1.1. The atomic model (p. 485) | html | pdf |
- 18.4.1.2. What is `atomic resolution'? (pp. 486-487) | html | pdf |
- 18.4.1.3. A theoretical approach to `atomic resolution' (p. 487) | html | pdf |
- 18.4.2. Data (pp. 487-488) | html | pdf |
- 18.4.2.1. Data quality (pp. 487-488) | html | pdf |
- 18.4.2.2. Anisotropic scaling (p. 488) | html | pdf |
- 18.4.3. Computational algorithms and strategies (pp. 488-489) | html | pdf |
- 18.4.3.1. Classical least-squares refinement of small molecules (p. 488) | html | pdf |
- 18.4.3.2. Least-squares refinement of large structures (pp. 488-489) | html | pdf |
- 18.4.3.3. Fast Fourier transform (p. 489) | html | pdf |
- 18.4.3.4. Maximum likelihood (p. 489) | html | pdf |
- 18.4.3.5. Twinning (p. 489) | html | pdf |
- 18.4.3.6. Computer power (p. 489) | html | pdf |
- 18.4.4. Computational options and tactics (pp. 489-491) | html | pdf |
- 18.4.4.1. Use of F (amplitudes) or F2 (intensities) (pp. 489-490) | html | pdf |
- 18.4.4.2. Restraints on coordinates and ADPs (p. 490) | html | pdf |
- 18.4.4.3. Partial occupancy (pp. 490-491) | html | pdf |
- 18.4.4.4. Validation of extra parameters during the refinement process (p. 491) | html | pdf |
- 18.4.5. Features in the refined model (pp. 491-495) | html | pdf |
- 18.4.5.1. Hydrogen atoms (pp. 491-492) | html | pdf |
- 18.4.5.2. Anisotropic atomic displacement parameters (p. 492) | html | pdf |
- 18.4.5.3. Alternative conformations (p. 492) | html | pdf |
- 18.4.5.4. Ordered solvent water (p. 493) | html | pdf |
- 18.4.5.5. Automatic location of water sites (p. 493) | html | pdf |
- 18.4.5.6. Bulk solvent and the low-resolution reflections (pp. 493-494) | html | pdf |
- 18.4.5.7. Metal ions and other ligands in the solvent (p. 494) | html | pdf |
- 18.4.5.8. Deformation density (pp. 494-495) | html | pdf |
- 18.4.6. Quality assessment of the model (p. 495) | html | pdf |
- 18.4.7. Relation to biological chemistry (pp. 495-496) | html | pdf |
- 18.4.8. Practical strategies (p. 496) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.4.1.1. The parameters of an atomic model (p. 485) | html | pdf |
- Table 18.4.1.2. Features which can be seen in the electron density at different resolutions (p. 486) | html | pdf |
- 18.5. Coordinate uncertainty (pp. 499-511) | html | pdf | chapter contents |
- 18.5.1. Introduction (pp. 499-500) | html | pdf |
- 18.5.1.1. Background (p. 499) | html | pdf |
- 18.5.1.2. Accuracy and precision (p. 499) | html | pdf |
- 18.5.1.3. Effect of atomic displacement parameters (or `temperature factors') (pp. 499-500) | html | pdf |
- 18.5.2. The least-squares method (pp. 500-501) | html | pdf |
- 18.5.2.1. The normal equations (p. 500) | html | pdf |
- 18.5.2.2. Weights (pp. 500-501) | html | pdf |
- 18.5.2.3. Statistical descriptors and goodness of fit (p. 501) | html | pdf |
- 18.5.3. Restrained refinement (pp. 501-502) | html | pdf |
- 18.5.3.1. Residual function (p. 501) | html | pdf |
- 18.5.3.2. A very simple protein model (pp. 501-502) | html | pdf |
- 18.5.3.3. Relative weighting of diffraction and restraint terms (p. 502) | html | pdf |
- 18.5.4. Two examples of full-matrix inversion (pp. 502-505) | html | pdf |
- 18.5.4.1. Unrestrained and restrained inversions for concanavalin A (pp. 502-504) | html | pdf |
- 18.5.4.2. Unrestrained inversion for an immunoglobulin (p. 504) | html | pdf |
- 18.5.4.3. Comments on restrained refinement (pp. 504-505) | html | pdf |
- 18.5.4.4. Full-matrix estimates of precision (p. 505) | html | pdf |
- 18.5.5. Approximate methods (pp. 505-506) | html | pdf |
- 18.5.5.1. Block calculations (p. 505) | html | pdf |
- 18.5.5.2. The modified Fourier method (p. 505) | html | pdf |
- 18.5.5.3. Application of the modified Fourier method (pp. 505-506) | html | pdf |
- 18.5.6. The diffraction-component precision index (pp. 506-507) | html | pdf |
- 18.5.6.1. Statistical expectation of error dependence (p. 506) | html | pdf |
- 18.5.6.2. A simple error formula (p. 506) | html | pdf |
- 18.5.6.3. Extension for low-resolution structures and use of Rfree (pp. 506-507) | html | pdf |
- 18.5.6.4. Position error (p. 507) | html | pdf |
- 18.5.7. Examples of the diffraction-component precision index (pp. 507-509) | html | pdf |
- 18.5.7.1. Full-matrix comparison with the diffraction-component precision index (p. 507) | html | pdf |
- 18.5.7.2. Further examples of the DPI using R (pp. 507-508) | html | pdf |
- 18.5.7.3. Examples of the DPI using Rfree (p. 508) | html | pdf |
- 18.5.7.4. Comments on the diffraction-component precision index (pp. 508-509) | html | pdf |
- 18.5.8. Luzzati plots (pp. 509-510) | html | pdf |
- 18.5.8.1. Luzzati's theory (p. 509) | html | pdf |
- 18.5.8.2. Statistical reinterpretation of Luzzati plots (pp. 509-510) | html | pdf |
- 18.5.8.3. Comments on Luzzati plots (p. 510) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.5.7.1. Comparison of full-matrix with the diffraction-component precision index (DPI) (p. 507) | html | pdf |
- Table 18.5.7.2. Examples of diffraction-component precision indices (DPIs) (p. 507) | html | pdf |
- Table 18.5.7.3. Comparison of DPIs using R and Rfree (p. 508) | html | pdf |
- Table 18.5.8.1. as a function of in the Luzzati model for three-dimensional noncentrosymmetric structures (p. 509) | html | pdf |
- 18.6. CNS, a program system for structure-determination and refinement (pp. 512-519) | html | pdf | chapter contents |
- 18.6.1. Introduction (p. 512) | html | pdf |
- 18.6.2. The CNS language (pp. 512-513) | html | pdf |
- 18.6.3. Symbols and parameters (p. 513) | html | pdf |
- 18.6.4. Statistical functions (pp. 513-514) | html | pdf |
- 18.6.5. Symbolic target function (pp. 514-515) | html | pdf |
- 18.6.6. Modules and procedures (pp. 515-516) | html | pdf |
- 18.6.7. Task files (p. 516) | html | pdf |
- 18.6.8. HTML interface (pp. 516-517) | html | pdf |
- 18.6.9. Example: combined maximum-likelihood and simulated-annealing refinement (p. 517) | html | pdf |
- 18.6.10. Conclusions (p. 517) | html | pdf |
- References
| html | pdf |
- Figures
- 18.7. The TNT refinement package (pp. 520-524) | html | pdf | chapter contents |
- 18.7.1. Scope and function of the package (p. 520) | html | pdf |
- 18.7.2. Historical context (p. 520) | html | pdf |
- 18.7.3. Design principles (pp. 520-522) | html | pdf |
- 18.7.3.1. Refinement should be simple to run (pp. 520-521) | html | pdf |
- 18.7.3.2. Refinement should run quickly and use as little memory as possible (p. 521) | html | pdf |
- 18.7.3.3. The source code should not require customization for each project (pp. 521-522) | html | pdf |
- 18.7.4. Current structure of the package (p. 522) | html | pdf |
- 18.7.5. Innovations first introduced in TNT (pp. 522-523) | html | pdf |
- 18.7.5.1. Identifying and restraining symmetry-related contacts (1982) (p. 522) | html | pdf |
- 18.7.5.2. The ability of a single package to perform both individual atom and rigid-body refinement (1982) (p. 522) | html | pdf |
- 18.7.5.3. Space-group optimized FFTs for all space groups (1989) (p. 522) | html | pdf |
- 18.7.5.4. Modelling bulk solvent scattering via local scaling (∼1989) (p. 522) | html | pdf |
- 18.7.5.5. Preconditioned conjugate-gradient minimization (1990) (p. 522) | html | pdf |
- 18.7.5.6. Restraining stereochemistry of chemical links to symmetry-related molecules (∼1992) (p. 522) | html | pdf |
- 18.7.5.7. Knowledge-based B-factor restraints (∼1994) (pp. 522-523) | html | pdf |
- 18.7.5.8. Block-diagonal preconditioned conjugate-gradient minimization with pseudoinverses (1998) (p. 523) | html | pdf |
- 18.7.5.9. Generalization of noncrystallographic symmetry operators to include shifts in the average B factor (1998) (p. 523) | html | pdf |
- 18.7.6. TNT as a research tool (p. 523) | html | pdf |
- 18.7.6.1. Michael Chapman's real-space refinement package (p. 523) | html | pdf |
- 18.7.6.2. Randy Read's maximum-likelihood function (p. 523) | html | pdf |
- 18.7.6.3. J. P. Abrahams' likelihood-weighted noncrystallographic symmetry restraints (p. 523) | html | pdf |
- 18.7.6.4. The Buster refinement package (p. 523) | html | pdf |
- 18.7.7. Current status of TNT (p. 523) | html | pdf |
- References
| html | pdf |
- 18.8. ARP/wARP – automated model building and refinement (pp. 525-528) | html | pdf | chapter contents |
- 18.8.1. Refinement and model building are two parts of modelling a structure (p. 525) | html | pdf |
- 18.8.2. Free-atom and hybrid models (pp. 525-526) | html | pdf |
- 18.8.3. ARP/wARP applications (pp. 526-528) | html | pdf |
- 18.8.3.1. Iterative protein-model building (pp. 526-527) | html | pdf |
- 18.8.3.2. Recognition of secondary structural elements (p. 527) | html | pdf |
- 18.8.3.3. Building polynucleotide fragments (p. 527) | html | pdf |
- 18.8.3.4. Building bound ligands (p. 527) | html | pdf |
- 18.8.3.5. Solvent building (pp. 527-528) | html | pdf |
- 18.8.4. Iterations (p. 528) | html | pdf |
- 18.8.5. Applicability and requirements (p. 528) | html | pdf |
- References
| html | pdf |
- Figures
- 18.9. Macromolecular applications of SHELX (pp. 529-533) | html | pdf | chapter contents |
- 18.9.1. Introduction (p. 529) | html | pdf |
- 18.9.2. Experimental phasing with SHELXC/D/E (pp. 529-530) | html | pdf |
- 18.9.2.1. Substructure location with SHELXD (p. 529) | html | pdf |
- 18.9.2.2. Practical considerations for substructure solution (pp. 529-530) | html | pdf |
- 18.9.2.3. SHELXE: density modification (p. 530) | html | pdf |
- 18.9.2.4. Integrated density modification and autotracing (p. 530) | html | pdf |
- 18.9.3. Macromolecular refinement using SHELXL (pp. 531-532) | html | pdf |
- 18.9.3.1. Constraints and restraints (p. 531) | html | pdf |
- 18.9.3.2. Least-squares refinement algebra (p. 531) | html | pdf |
- 18.9.3.3. Full-matrix estimates of standard uncertainties (p. 531) | html | pdf |
- 18.9.3.4. Refinement of anisotropic displacement parameters (pp. 531-532) | html | pdf |
- 18.9.3.5. Similar geometry and NCS restraints (p. 532) | html | pdf |
- 18.9.3.6. Modelling disorder and solvent (p. 532) | html | pdf |
- 18.9.3.7. Twinned crystals (p. 532) | html | pdf |
- 18.9.4. SHELXPRO – protein interface to SHELX (p. 532) | html | pdf |
- 18.9.5. Distribution and support of SHELX (p. 532) | html | pdf |
- References
| html | pdf |
- 18.10. PrimeX and the Schrödinger computational chemistry suite of programs (pp. 534-538) | html | pdf | chapter contents |
- 18.10.1. Introduction (p. 534) | html | pdf |
- 18.10.1.1. Computational environment (p. 534) | html | pdf |
- 18.10.1.2. Mission (p. 534) | html | pdf |
- 18.10.1.3. Implementation path (p. 534) | html | pdf |
- 18.10.2. Computational environment (pp. 534-535) | html | pdf |
- 18.10.2.1. Molecular graphics (p. 534) | html | pdf |
- 18.10.2.2. Supporting infrastructure (p. 534) | html | pdf |
- 18.10.2.3. Molecular mechanics (p. 535) | html | pdf |
- 18.10.3. Achieving the mission of PrimeX (pp. 535-536) | html | pdf |
- 18.10.3.1. Molecular models and computational chemistry (p. 535) | html | pdf |
- 18.10.3.1.1. Hydrogen atoms (p. 535) | html | pdf |
- 18.10.3.1.2. Electrostatics and implicit solvation (p. 535) | html | pdf |
- 18.10.3.1.3. van der Waals interactions (p. 535) | html | pdf |
- 18.10.3.2. Molecular models consistent with X-ray data (pp. 535-536) | html | pdf |
- 18.10.3.3. Automation of refinement tasks (p. 536) | html | pdf |
- 18.10.4. PrimeX implementation and theory (pp. 536-538) | html | pdf |
- 18.10.4.1. Force-field model and automatic atom typing (p. 536) | html | pdf |
- 18.10.4.2. Reciprocal-space calculations (pp. 536-537) | html | pdf |
- 18.10.4.2.1. Restrained maximum-likelihood minimization (p. 536) | html | pdf |
- 18.10.4.2.2. Simulated annealing (p. 536) | html | pdf |
- 18.10.4.2.3. Map generation (p. 536) | html | pdf |
- 18.10.4.2.4. Omit maps (pp. 536-537) | html | pdf |
- 18.10.4.3. Real-space tools (p. 537) | html | pdf |
- 18.10.4.3.1. Loop refinement (p. 537) | html | pdf |
- 18.10.4.3.2. Side-chain placement (p. 537) | html | pdf |
- 18.10.4.3.3. Minimization (p. 537) | html | pdf |
- 18.10.4.4. Water placement (p. 537) | html | pdf |
- 18.10.4.5. Ligand placement (p. 537) | html | pdf |
- 18.10.4.6. Validation (pp. 537-538) | html | pdf |
- 18.10.5. Conclusion (p. 538) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.10.1.1. Schrödinger software packages related to PrimeX (p. 534) | html | pdf |
- 18.11. PHENIX: a comprehensive Python-based system for macromolecular structure solution (pp. 539-547) | html | pdf | chapter contents |
P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L.-W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger and P. H. Zwart - 18.11.1. Foundations (p. 539) | html | pdf |
- 18.11.1.1. PHENIX architecture (p. 539) | html | pdf |
- 18.11.1.2. Graphical user interface (p. 539) | html | pdf |
- 18.11.2. Analysis of experimental data (p. 540) | html | pdf |
- 18.11.3. Substructure determination, phasing and molecular replacement (pp. 540-541) | html | pdf |
- 18.11.3.1. Substructure determination (p. 540) | html | pdf |
- 18.11.3.2. Phasing (p. 540) | html | pdf |
- 18.11.3.3. Noncrystallographic symmetry (NCS) (pp. 540-541) | html | pdf |
- 18.11.4. Model building, ligand fitting and nucleic acids (pp. 541-542) | html | pdf |
- 18.11.4.1. Model building (p. 541) | html | pdf |
- 18.11.4.2. Ligand fitting (p. 541) | html | pdf |
- 18.11.4.3. RNA and DNA (p. 541) | html | pdf |
- 18.11.4.4. Maps, models and avoiding bias (p. 542) | html | pdf |
- 18.11.5. Model, and model-to-data, validation (pp. 542-543) | html | pdf |
- 18.11.5.1. Model and structure-factor manipulation and analysis (pp. 542-543) | html | pdf |
- 18.11.6. Structure refinement (pp. 543-544) | html | pdf |
- 18.11.6.1. Ligand-coordinate and restraint-geometry generation (pp. 543-544) | html | pdf |
- 18.11.7. Integrated structure determination (pp. 544-545) | html | pdf |
- 18.11.7.1. Why automation? (p. 544) | html | pdf |
- 18.11.7.2. Automated structure solution (p. 544) | html | pdf |
- 18.11.7.3. Iterative model building, density modification and refinement (pp. 544-545) | html | pdf |
- 18.11.8. Conclusions (p. 545) | html | pdf |
- References
| html | pdf |
- 18.12. Structure determination in the presence of twinning by merohedry (pp. 548-551) | html | pdf | chapter contents |
- 18.12.1. Introduction (p. 548) | html | pdf |
- 18.12.2. Detwinning based on observed intensities (p. 548) | html | pdf |
- 18.12.3. Molecular replacement with twinning (p. 548) | html | pdf |
- 18.12.4. Multiple isomorphous replacement and anomalous phasing with twinning (pp. 548-549) | html | pdf |
- 18.12.5. Atomic refinement with twinning (pp. 549-550) | html | pdf |
- 18.12.6. Detwinning on the basis of model Fcalc values (p. 550) | html | pdf |
- 18.12.7. Summary (pp. 550-551) | html | pdf |
- References
| html | pdf |
- Figures
- Other experimental techniques
- 19.1. Neutron crystallography: methods and information content (pp. 553-556) | html | pdf | chapter contents |
- 19.1.1. Introduction (p. 553) | html | pdf |
- 19.1.2. Diffraction geometries (p. 553) | html | pdf |
- 19.1.2.1. Quasi-Laue diffractometry (p. 553) | html | pdf |
- 19.1.3. Neutron density maps – information content (pp. 553-554) | html | pdf |
- 19.1.4. Phasing models and evaluation of correctness (p. 554) | html | pdf |
- 19.1.5. Evaluation of correctness (pp. 554-555) | html | pdf |
- 19.1.6. Refinement (p. 555) | html | pdf |
- 19.1.7. D2O − H2O solvent difference maps (p. 555) | html | pdf |
- 19.1.8. Applications of D2O − H2O solvent difference maps (pp. 555-556) | html | pdf |
- 19.1.8.1. Orientation of water molecules (p. 555) | html | pdf |
- 19.1.8.2. H/D exchange (p. 556) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 19.1.1.1. Scattering lengths for atom types (p. 553) | html | pdf |
- 19.2. Electron diffraction of protein crystals (pp. 557-562) | html | pdf | chapter contents |
- 19.2.1. Electron scattering (p. 557) | html | pdf |
- 19.2.2. The electron microscope (p. 557) | html | pdf |
- 19.2.3. Data collection (pp. 557-558) | html | pdf |
- 19.2.3.1. Specimen preparation (pp. 557-558) | html | pdf |
- 19.2.3.2. Radiation damage (p. 558) | html | pdf |
- 19.2.3.3. Other technical factors (p. 558) | html | pdf |
- 19.2.4. Data processing (pp. 558-561) | html | pdf |
- 19.2.4.1. Data sampling (pp. 558-559) | html | pdf |
- 19.2.4.2. Amplitudes and phases (pp. 559-560) | html | pdf |
- 19.2.4.3. 3D map (p. 560) | html | pdf |
- 19.2.4.4. Refinement (pp. 560-561) | html | pdf |
- 19.2.5. Future development (p. 561) | html | pdf |
- References
| html | pdf |
- Figures
- 19.3. Small-angle X-ray scattering (pp. 563-574) | html | pdf | chapter contents |
- 19.3.1. Introduction (p. 563) | html | pdf |
- 19.3.2. Small-angle single-crystal X-ray diffraction studies (pp. 563-564) | html | pdf |
- 19.3.3. Solution X-ray scattering studies (pp. 564-573) | html | pdf |
- 19.3.3.1. Information content of solution scattering (pp. 564-568) | html | pdf |
- 19.3.3.1.1. Solution scattering and crystal structures (p. 567) | html | pdf |
- 19.3.3.1.2. Low-resolution model determination using solution scattering (pp. 567-568) | html | pdf |
- 19.3.3.2. Instrumentation for small-angle X-ray scattering (pp. 568-569) | html | pdf |
- 19.3.3.2.1. Instruments on conventional sources (p. 568) | html | pdf |
- 19.3.3.2.2. Synchrotron instruments (pp. 568-569) | html | pdf |
- 19.3.3.3. Experimental considerations (pp. 569-571) | html | pdf |
- 19.3.3.3.1. Sample preparation (p. 569) | html | pdf |
- 19.3.3.3.2. Sample-handling devices (pp. 569-570) | html | pdf |
- 19.3.3.3.3. Designing experiments (p. 570) | html | pdf |
- 19.3.3.3.4. Data-collection practices (pp. 570-571) | html | pdf |
- 19.3.3.3.5. Data processing and analysis (p. 571) | html | pdf |
- 19.3.3.4. Recent applications of solution X-ray scattering in structural molecular biology (pp. 571-573) | html | pdf |
- 19.3.3.4.1. Studies of proteins in solution that complement high-resolution structures (pp. 571-572) | html | pdf |
- 19.3.3.4.2. Time-resolved studies (p. 572) | html | pdf |
- 19.3.3.4.3. Protein-folding studies (pp. 572-573) | html | pdf |
- Figures
- Tables
- Table 19.3.3.1. List of commonly used software for solution scattering (p. 571) | html | pdf |
- 19.4. Small-angle neutron scattering (pp. 575-582) | html | pdf | chapter contents |
- 19.4.1. Introduction (p. 575) | html | pdf |
- 19.4.2. Fundamental relationships (pp. 575-577) | html | pdf |
- 19.4.3. Contrast variation (pp. 577-579) | html | pdf |
- 19.4.3.1. Variation of solvent density (p. 577) | html | pdf |
- 19.4.3.2. Variation of internal contrast (pp. 577-578) | html | pdf |
- 19.4.3.3. Relationship of contrasting regions (p. 578) | html | pdf |
- 19.4.3.4. The triple isotopic substitution method (p. 578) | html | pdf |
- 19.4.3.5. Nuclear spin contrast variation (p. 578) | html | pdf |
- 19.4.3.6. Interpretation of small-angle scattering using models (pp. 578-579) | html | pdf |
- 19.4.3.7. Use of forward scattering to measure molecular weights (p. 579) | html | pdf |
- 19.4.4. Distance measurements (pp. 579-580) | html | pdf |
- 19.4.4.1. Theory and background (p. 579) | html | pdf |
- 19.4.4.2. Neutron distance measurements (pp. 579-580) | html | pdf |
- 19.4.4.3. The statistical labelling method (p. 580) | html | pdf |
- 19.4.5. Practical considerations (p. 580) | html | pdf |
- 19.4.5.1. Feasibility (p. 580) | html | pdf |
- 19.4.5.2. Homogeneity and stability (p. 580) | html | pdf |
- 19.4.5.3. Solvent conditions (p. 580) | html | pdf |
- 19.4.6. Examples (pp. 580-581) | html | pdf |
- 19.4.6.1. Contrast variation (p. 580) | html | pdf |
- 19.4.6.2. Contrast matching (p. 580) | html | pdf |
- 19.4.6.3. Spin contrast variation (p. 580) | html | pdf |
- 19.4.6.4. Specific deuteration, combination with X-ray measurements (p. 580) | html | pdf |
- 19.4.6.5. Distance measurements and triangulation (pp. 580-581) | html | pdf |
- References
| html | pdf |
- 19.5. Fibre diffraction (pp. 583-592) | html | pdf | chapter contents |
- 19.5.1. Introduction (p. 583) | html | pdf |
- 19.5.2. Types of fibres (pp. 583-584) | html | pdf |
- 19.5.3. Diffraction by helical molecules (pp. 584-585) | html | pdf |
- 19.5.3.1. Fibre diffraction patterns (p. 584) | html | pdf |
- 19.5.3.2. Helical symmetry (p. 584) | html | pdf |
- 19.5.3.3. Structure factors (p. 584) | html | pdf |
- 19.5.3.4. Fourier–Bessel syntheses (p. 584) | html | pdf |
- 19.5.3.5. Diffracted intensities: noncrystalline fibres (p. 584) | html | pdf |
- 19.5.3.6. Diffracted intensities: polycrystalline fibres (pp. 584-585) | html | pdf |
- 19.5.4. Fibre preparation (p. 585) | html | pdf |
- 19.5.5. Data collection (p. 585) | html | pdf |
- 19.5.6. Data processing (pp. 585-586) | html | pdf |
- 19.5.6.1. Coordinate transformation (p. 585) | html | pdf |
- 19.5.6.2. Intensity correction (pp. 585-586) | html | pdf |
- 19.5.6.3. Background subtraction (p. 586) | html | pdf |
- 19.5.6.4. Integration of crystalline fibre data (p. 586) | html | pdf |
- 19.5.6.5. Integration of continuous data (p. 586) | html | pdf |
- 19.5.7. Determination of structures (pp. 586-588) | html | pdf |
- 19.5.7.1. Initial models: small unit cells (pp. 586-587) | html | pdf |
- 19.5.7.2. Refinement: small unit cells (p. 587) | html | pdf |
- 19.5.7.3. Data-to-parameter ratio (p. 587) | html | pdf |
- 19.5.7.4. Initial models: large unit cells (p. 587) | html | pdf |
- 19.5.7.5. Refinement: large unit cells (pp. 587-588) | html | pdf |
- 19.5.7.6. Difference Fourier methods (p. 588) | html | pdf |
- 19.5.7.7. Evaluation (p. 588) | html | pdf |
- 19.5.8. Structures determined by X-ray fibre diffraction (pp. 588-590) | html | pdf |
- 19.5.8.1. Polypeptides (pp. 588-589) | html | pdf |
- 19.5.8.2. Polynucleotides (p. 589) | html | pdf |
- 19.5.8.3. Polysaccharides (p. 589) | html | pdf |
- 19.5.8.4. Helical viruses and bacteriophages (pp. 589-590) | html | pdf |
- 19.5.8.5. Other large assemblies (p. 590) | html | pdf |
- References
| html | pdf |
- Figures
- 19.6. Electron cryomicroscopy of biological macromolecules (pp. 593-614) | html | pdf | chapter contents |
- 19.6.1. Abbreviations used (p. 593) | html | pdf |
- 19.6.2. Introduction: macromolecular structure determination using electron microscopy (p. 593) | html | pdf |
- 19.6.3. Physics of electron scattering and radiation damage (pp. 593-595) | html | pdf |
- 19.6.3.1. Elastic and inelastic scattering (p. 594) | html | pdf |
- 19.6.3.2. Radiation damage (pp. 594-595) | html | pdf |
- 19.6.3.3. Required properties of the illuminating electron beam (p. 595) | html | pdf |
- 19.6.4. Three-dimensional electron cryomicroscopy of macromolecules (pp. 595-601) | html | pdf |
- 19.6.4.1. Overview of conceptual steps (pp. 595-596) | html | pdf |
- 19.6.4.2. Classification of macromolecules (p. 597) | html | pdf |
- 19.6.4.3. Specimen preparation (pp. 597-599) | html | pdf |
- 19.6.4.4. Microscopy (pp. 599-600) | html | pdf |
- 19.6.4.5. Selection and preprocessing of digitized images (p. 601) | html | pdf |
- 19.6.5. Image processing and 3D reconstruction (pp. 601-604) | html | pdf |
- 19.6.5.1. 2D crystals (p. 603) | html | pdf |
- 19.6.5.2. Helical particles (p. 603) | html | pdf |
- 19.6.5.3. Icosahedral particles (pp. 603-604) | html | pdf |
- 19.6.5.4. Electron cryo-tomography (p. 604) | html | pdf |
- 19.6.6. Visualization, modelling and interpretation of results (pp. 604-605) | html | pdf |
- 19.6.7. Trends (pp. 605-606) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 19.6.4.1. Classification of macromolecules according to periodic order and symmetry (p. 598) | html | pdf |
- Table 19.6.5.1. Methods of three-dimensional image reconstruction (p. 602) | html | pdf |
- 19.7. Nuclear magnetic resonance (NMR) spectroscopy (pp. 615-619) | html | pdf | chapter contents |
- 19.7.1. Complementary roles of NMR in solution and X-ray crystallography in structural biology (p. 615) | html | pdf |
- 19.7.2. A standard protocol for NMR structure determination of proteins and nucleic acids (pp. 615-617) | html | pdf |
- 19.7.3. Combined use of single-crystal X-ray diffraction and solution NMR for structure determination (p. 617) | html | pdf |
- 19.7.4. NMR studies of solvation in solution (pp. 617-618) | html | pdf |
- 19.7.5. NMR studies of rate processes and conformational equilibria in three-dimensional macromolecular structures (p. 618) | html | pdf |
- References
| html | pdf |
- Figures
- 19.8. Use of SPIDER and SPIRE in image reconstruction (pp. 620-623) | html | pdf | chapter contents |
- 19.8.1. Introduction (p. 620) | html | pdf |
- 19.8.2. Basic philosophy of single-particle reconstruction (pp. 620-621) | html | pdf |
- 19.8.3. Implementation of single-particle reconstruction in SPIDER (pp. 621-623) | html | pdf |
- 19.8.3.1. Level 1: elementary commands (pp. 621-622) | html | pdf |
- 19.8.3.2. Level 2: procedures (pp. 622-623) | html | pdf |
- 19.8.4. Implementation of single-particle reconstruction in SPIRE (p. 623) | html | pdf |
- 19.8.5. Conclusion (p. 623) | html | pdf |
- References
| html | pdf |
- Figures
- 19.9. Four-dimensional cryo-electron microscopy at quasi-atomic resolution: IMAGIC 4D (pp. 624-628) | html | pdf | chapter contents |
- 19.9.1. Introduction (p. 624) | html | pdf |
- 19.9.2. The IMAGIC software system (p. 624) | html | pdf |
- 19.9.3. IMAGIC `4D' processing/data format (pp. 624-625) | html | pdf |
- 19.9.4. Software parallelization (p. 625) | html | pdf |
- 19.9.5. Full 2D (parallel) astigmatic contrast transfer function correction (p. 625) | html | pdf |
- 19.9.6. Parallel automatic particle picking (p. 625) | html | pdf |
- 19.9.7. Parallel multi-reference alignments and reference bias (p. 626) | html | pdf |
- 19.9.8. MSA and its parallelization (p. 626) | html | pdf |
- 19.9.9. Handling multiple 3D reconstructions in parallel (pp. 626-627) | html | pdf |
- 19.9.10. Angular reconstitution 4D refinements (p. 627) | html | pdf |
- 19.9.11. Discussion (p. 627) | html | pdf |
- References
| html | pdf |
- Figures
- 19.10. Single-particle reconstruction with EMAN (pp. 629-632) | html | pdf | chapter contents |
- 19.10.1. Introduction (p. 629) | html | pdf |
- 19.10.2. Overview of EMAN (pp. 629-630) | html | pdf |
- 19.10.2.1. GUI layer and workflow (p. 629) | html | pdf |
- 19.10.2.2. Command-line programs (pp. 629-630) | html | pdf |
- 19.10.2.3. Python wrapper (p. 630) | html | pdf |
- 19.10.2.4. C++ (p. 630) | html | pdf |
- 19.10.2.5. Cross-platform support (p. 630) | html | pdf |
- 19.10.2.6. Parallel processing (p. 630) | html | pdf |
- 19.10.2.7. File formats and other conventions (p. 630) | html | pdf |
- 19.10.3. Single-particle reconstruction (p. 631) | html | pdf |
- 19.10.3.1. Particle selection (e2boxer.py) (p. 631) | html | pdf |
- 19.10.3.2. Contrast transfer function/image evaluation (e2ctf.py) (p. 631) | html | pdf |
- 19.10.3.3. Grouping particles into sets (p. 631) | html | pdf |
- 19.10.3.4. Reference-free two-dimensional classification (e2refine2d.py) (p. 631) | html | pdf |
- 19.10.3.5. Initial model generation (e2initialmodel.py) (p. 631) | html | pdf |
- 19.10.3.6. Refinement (e2refine.py) (p. 631) | html | pdf |
- 19.10.4. Evaluating the reconstruction (pp. 631-632) | html | pdf |
- 19.10.4.1. Model accuracy (p. 632) | html | pdf |
- 19.10.4.2. Measures of resolution and resolvability (p. 632) | html | pdf |
- 19.10.4.3. Model/noise bias (p. 632) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 19.10.2.1. Listing of EMAN2 supported file formats and whether each has read (R) and/or write (W) support (p. 630) | html | pdf |
- Energy calculations and molecular dynamics
- 20.1. Molecular-dynamics simulation of protein crystals: convergence of molecular properties of ubiquitin (pp. 633-641) | html | pdf | chapter contents |
- 20.1.1. Introduction (p. 633) | html | pdf |
- 20.1.2. Methods (pp. 633-634) | html | pdf |
- 20.1.3. Results (pp. 634-640) | html | pdf |
- 20.1.3.1. Energetic properties (p. 634) | html | pdf |
- 20.1.3.2. Structural properties (pp. 634-636) | html | pdf |
- 20.1.3.3. Effect of the translational and rotational fitting procedure (pp. 636-638) | html | pdf |
- 20.1.3.4. Effect of the averaging period (pp. 638-639) | html | pdf |
- 20.1.3.5. Internal motions of the proteins (p. 639) | html | pdf |
- 20.1.3.6. Dihedral-angle fluctuations and transitions (pp. 639-640) | html | pdf |
- 20.1.3.7. Water diffusion (p. 640) | html | pdf |
- 20.1.4. Conclusions (p. 640) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 20.1.3.1. Occurrence of intramolecular hydrogen bonds (%) during the final 1.6 ns of the simulation (pp. 636-637) | html | pdf |
- Table 20.1.3.2. Occurrence of intermolecular hydrogen bonds (%) during the final 1.6 ns of the simulation (p. 637) | html | pdf |
- Table 20.1.3.3. Root-mean-square fluctuations of polypeptide backbone and ψ dihedral angles (°) for the different molecules using different time-averaging periods (p. 639) | html | pdf |
- Table 20.1.3.4. Number of protein-backbone dihedral-angle transitions per 100 ps for the different molecules using different time periods (p. 639) | html | pdf |
- 20.2. Molecular-dynamics simulations of biological macromolecules (pp. 642-648) | html | pdf | chapter contents |
- 20.2.1. Introduction (p. 642) | html | pdf |
- 20.2.2. The simulation method (p. 642) | html | pdf |
- 20.2.3. Potential-energy function (pp. 642-644) | html | pdf |
- 20.2.3.1. Empirical energy (pp. 642-643) | html | pdf |
- 20.2.3.2. Particle mesh Ewald (p. 643) | html | pdf |
- 20.2.3.3. Experimental restraints in the energy function (pp. 643-644) | html | pdf |
- 20.2.4. Empirical parameterization of the force field (p. 644) | html | pdf |
- 20.2.5. Modifications in the force field for structure determination (p. 644) | html | pdf |
- 20.2.6. Internal dynamics and average structures (pp. 644-645) | html | pdf |
- 20.2.7. Assessment of the simulation procedure (p. 645) | html | pdf |
- 20.2.8. Effect of crystallographic atomic resolution on structural stability during molecular dynamics (pp. 645-647) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 20.2.8.1. R.m.s. coordinate differences between crystallographic structures and average MD structures (p. 646) | html | pdf |
- Structure validation
- 21.1. Validation of protein crystal structures (pp. 649-661) | html | pdf | chapter contents |
- 21.1.1. Introduction (p. 649) | html | pdf |
- 21.1.2. Types of error (pp. 649-650) | html | pdf |
- 21.1.3. Detecting outliers (pp. 650-651) | html | pdf |
- 21.1.3.1. Classes of quality indicators (p. 650) | html | pdf |
- 21.1.3.2. Local statistics (pp. 650-651) | html | pdf |
- 21.1.3.3. Global statistics (p. 651) | html | pdf |
- 21.1.4. Fixing errors (pp. 651-652) | html | pdf |
- 21.1.5. Preventing errors (p. 652) | html | pdf |
- 21.1.6. Final model (p. 652) | html | pdf |
- 21.1.7. A compendium of quality criteria (pp. 652-658) | html | pdf |
- 21.1.7.1. Data quality (pp. 653-654) | html | pdf |
- 21.1.7.1.1. Merging R values (p. 653) | html | pdf |
- 21.1.7.1.2. Completeness (p. 653) | html | pdf |
- 21.1.7.1.3. Redundancy (p. 653) | html | pdf |
- 21.1.7.1.4. Signal strength (p. 653) | html | pdf |
- 21.1.7.1.5. Resolution (p. 653) | html | pdf |
- 21.1.7.1.6. Unit-cell parameters (pp. 653-654) | html | pdf |
- 21.1.7.1.7. Symmetry (p. 654) | html | pdf |
- 21.1.7.2. Model quality, coordinates (pp. 654-656) | html | pdf |
- 21.1.7.2.1. Geometry and stereochemistry (p. 654) | html | pdf |
- 21.1.7.2.2. Torsion angles (dihedrals) (pp. 654-655) | html | pdf |
- 21.1.7.2.3. Cα-only models (p. 655) | html | pdf |
- 21.1.7.2.4. Contacts and environments (pp. 655-656) | html | pdf |
- 21.1.7.2.5. Noncrystallographic symmetry (p. 656) | html | pdf |
- 21.1.7.2.6. Solvent molecules (p. 656) | html | pdf |
- 21.1.7.2.7. Miscellaneous (p. 656) | html | pdf |
- 21.1.7.3. Model quality, temperature factors (pp. 656-657) | html | pdf |
- 21.1.7.4. Model versus experimental data (pp. 657-658) | html | pdf |
- 21.1.7.4.1. R values (p. 657) | html | pdf |
- 21.1.7.4.2. Real-space fits (p. 657) | html | pdf |
- 21.1.7.4.3. Coordinate error estimates (pp. 657-658) | html | pdf |
- 21.1.7.4.4. Noncrystallographic symmetry (p. 658) | html | pdf |
- 21.1.7.4.5. Difference density quality (p. 658) | html | pdf |
- 21.1.7.5. Accountancy (p. 658) | html | pdf |
- 21.1.8. Future (p. 658) | html | pdf |
- References
| html | pdf |
- 21.2. Assessing the quality of macromolecular structures (pp. 662-676) | html | pdf | chapter contents |
- 21.2.1. Introduction (p. 662) | html | pdf |
- 21.2.2. Validating the geometric and stereochemical parameters of the model (pp. 662-665) | html | pdf |
- 21.2.2.1. Comparisons against standard values derived from crystals of small molecules (pp. 662-663) | html | pdf |
- 21.2.2.2. Comparisons against standard values derived from surveys of other macromolecules (pp. 663-665) | html | pdf |
- 21.2.2.2.1. Validation of stereochemical and non-bonded parameters (p. 663) | html | pdf |
- 21.2.2.2.2. Validation using knowledge-based interaction potentials and profiles (pp. 663-664) | html | pdf |
- 21.2.2.2.3. Deviations from standard atomic volumes as a quality measure for protein crystal structures (pp. 664-665) | html | pdf |
- 21.2.3. Validation of a model versus experimental data (pp. 665-673) | html | pdf |
- 21.2.3.1. A systematic approach using the SFCHECK software (pp. 666-673) | html | pdf |
- 21.2.3.1.1. Tasks performed by SFCHECK (pp. 666-667) | html | pdf |
- 21.2.3.1.1.1. Treatment of structure-factor data and scaling (p. 666) | html | pdf |
- 21.2.3.1.1.2. Global agreement between the model and experimental data (p. 666) | html | pdf |
- 21.2.3.1.1.3. Estimations of errors in atomic positions (p. 667) | html | pdf |
- 21.2.3.1.1.4. Local agreement between the model and the experimental data (p. 667) | html | pdf |
- 21.2.3.1.2. Evaluation of individual structures (pp. 667-668) | html | pdf |
- 21.2.3.1.3. Quality assessment based on surveys across structures (pp. 668-673) | html | pdf |
- 21.2.3.1.3.1. Assessing the quality of a structure as a whole (pp. 668-669) | html | pdf |
- 21.2.3.1.3.2. Assessing the quality in specific regions of a model (pp. 670-673) | html | pdf |
- 21.2.4. Atomic resolution structures (p. 673) | html | pdf |
- 21.2.5. Concluding remarks (p. 673) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 21.2.3.1. Parameters computed for the analysis of the structure-factor data (p. 666) | html | pdf |
- Table 21.2.3.2. Estimation of errors in atomic coordinates (p. 667) | html | pdf |
- Table 21.2.3.3. Parameters computed by SFCHECK to assess the quality of the model in specific regions (p. 672) | html | pdf |
- 21.3. Detection of errors in protein models (pp. 677-683) | html | pdf | chapter contents |
- 21.3.1. Motivation and introduction (p. 677) | html | pdf |
- 21.3.2. Separating evaluation from refinement (p. 677) | html | pdf |
- 21.3.3. Algorithms for the detection of errors in protein models and the types of errors they detect (pp. 677-679) | html | pdf |
- 21.3.3.1. PROCHECK (pp. 677-678) | html | pdf |
- 21.3.3.2. WHAT IF (p. 678) | html | pdf |
- 21.3.3.3. VERIFY3D (p. 678) | html | pdf |
- 21.3.3.4. ERRAT (pp. 678-679) | html | pdf |
- 21.3.4. Selection of database (p. 679) | html | pdf |
- 21.3.5. Examples: detection of errors in structures (pp. 679-682) | html | pdf |
- 21.3.5.1. Specific examples (pp. 679-682) | html | pdf |
- 21.3.5.2. Survey of old and revised structures (p. 682) | html | pdf |
- 21.3.6. Summary (p. 682) | html | pdf |
- 21.3.7. Availability of software (p. 682) | html | pdf |
- References
| html | pdf |
- Figures
- 21.4. PROCHECK: validation of protein-structure coordinates (pp. 684-687) | html | pdf | chapter contents |
- 21.4.1. Introduction (p. 684) | html | pdf |
- 21.4.2. The program (p. 684) | html | pdf |
- 21.4.3. The parameters (pp. 684-685) | html | pdf |
- 21.4.4. Which parameters are best? (p. 685) | html | pdf |
- 21.4.5. Input (p. 686) | html | pdf |
- 21.4.6. Output produced (p. 686) | html | pdf |
- 21.4.7. Other validation tools (p. 686) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 21.4.3.1. Summary of expected values for stereochemical parameters in well resolved structures (p. 684) | html | pdf |
- 21.5. KiNG and kinemages (pp. 688-693) | html | pdf | chapter contents |
- 21.5.1. Introduction to aims and concepts (pp. 688-689) | html | pdf |
- 21.5.2. Uses of KiNG and kinemages (pp. 689-692) | html | pdf |
- 21.5.2.1. Use as a reader of existing kinemages (p. 689) | html | pdf |
- 21.5.2.2. Use for teaching and on the web (p. 689) | html | pdf |
- 21.5.2.3. Use for research (pp. 689-690) | html | pdf |
- 21.5.2.4. Cystallographic rebuilding tools (pp. 691-692) | html | pdf |
- 21.5.3. Making kinemages (pp. 692-693) | html | pdf |
- 21.5.4. Software notes (p. 693) | html | pdf |
- References
| html | pdf |
- Figures
- 21.6. MolProbity: all-atom structure validation for macromolecular crystallography (pp. 694-701) | html | pdf | chapter contents |
- 21.6.1. Summary of MolProbity flow and user interactions (p. 694) | html | pdf |
- 21.6.2. Validation analyses (pp. 694-697) | html | pdf |
- 21.6.2.1. Addition of H atoms (pp. 694-695) | html | pdf |
- 21.6.2.2. All-atom contact analysis (p. 695) | html | pdf |
- 21.6.2.3. Torsion-angle combinations: updated Ramachandran and rotamer analyses (pp. 695-697) | html | pdf |
- 21.6.2.4. Covalent-geometry analyses (p. 697) | html | pdf |
- 21.6.2.5. Nucleic acid analyses (p. 697) | html | pdf |
- 21.6.2.6. The overall MolProbity score (p. 697) | html | pdf |
- 21.6.3. Correction of outliers (pp. 698-699) | html | pdf |
- 21.6.3.1. Manual rebuilding (p. 698) | html | pdf |
- 21.6.3.2. Automated corrections (p. 699) | html | pdf |
- 21.6.4. Other MolProbity utility functions (pp. 699-700) | html | pdf |
- 21.6.4.1. Interface analysis (p. 699) | html | pdf |
- 21.6.4.2. Protein loop fitting (p. 699) | html | pdf |
- 21.6.4.3. Kinemage construction and viewing (p. 699) | html | pdf |
- 21.6.4.4. Other file types and functions (p. 699) | html | pdf |
- 21.6.4.5. PDB-format interconversion (pp. 699-700) | html | pdf |
- 21.6.5. Discussion (p. 700) | html | pdf |
- 21.6.5.1. Global versus local, absolute versus comparative (p. 700) | html | pdf |
- 21.6.5.2. Impact on database quality (p. 700) | html | pdf |
- 21.6.6. MolProbity availability (p. 701) | html | pdf |
- References
| html | pdf |
- Figures
- Molecular geometry and features
- 22.1. Protein geometry: volumes, areas and distances (pp. 703-712) | html | pdf | chapter contents |
- 22.1.1. Introduction (p. 703) | html | pdf |
- 22.1.2. Definitions of protein volume (pp. 703-706) | html | pdf |
- 22.1.2.1. Volume in terms of Voronoi polyhedra: overview (p. 703) | html | pdf |
- 22.1.2.2. The basic Voronoi construction (pp. 703-704) | html | pdf |
- 22.1.2.2.1. Integrating on a grid (pp. 703-704) | html | pdf |
- 22.1.2.2.2. Finding polyhedron vertices (p. 704) | html | pdf |
- 22.1.2.2.3. Collecting vertices and calculating volumes (p. 704) | html | pdf |
- 22.1.2.3. Adapting Voronoi polyhedra to proteins (pp. 704-705) | html | pdf |
- 22.1.2.3.1. Method B and a simplification of it: the ratio method (pp. 704-705) | html | pdf |
- 22.1.2.3.2. Vertex error (p. 705) | html | pdf |
- 22.1.2.3.3. `Chopping-down' method of finding vertices (p. 705) | html | pdf |
- 22.1.2.3.4. Radical-plane method (p. 705) | html | pdf |
- 22.1.2.4. Delaunay triangulation (pp. 705-706) | html | pdf |
- 22.1.3. Definitions of protein surface (pp. 706-708) | html | pdf |
- 22.1.3.1. The problem of the protein surface (p. 706) | html | pdf |
- 22.1.3.2. Definitions of surface in terms of Voronoi polyhedra (the convex hull) (p. 706) | html | pdf |
- 22.1.3.3. Definitions of surface in terms of a probe sphere (pp. 707-708) | html | pdf |
- 22.1.3.3.1. van der Waals surface (VDWS) (p. 707) | html | pdf |
- 22.1.3.3.2. Solvent-accessible surface (SAS) (p. 707) | html | pdf |
- 22.1.3.3.3. Molecular surface as the sum of the contact and re-entrant surfaces (MS = CS + RS) (pp. 707-708) | html | pdf |
- 22.1.3.3.4. Further points (p. 708) | html | pdf |
- 22.1.4. Definitions of atomic radii (pp. 708-709) | html | pdf |
- 22.1.4.1. van der Waals radii (pp. 708-709) | html | pdf |
- 22.1.4.2. The probe radius (p. 709) | html | pdf |
- 22.1.5. Application of geometry calculations: the measurement of packing (pp. 709-711) | html | pdf |
- 22.1.5.1. Using volume to measure packing efficiency (pp. 709-710) | html | pdf |
- 22.1.5.2. The tight packing of the protein core (pp. 710-711) | html | pdf |
- 22.1.5.3. Looser packing on the surface (p. 711) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 22.1.4.1. Standard atomic radii (Å) (p. 708) | html | pdf |
- Table 22.1.4.2. Probe radii and their relation to surface definition (p. 709) | html | pdf |
- Table 22.1.5.1. Standard residue volumes (p. 710) | html | pdf |
- Table 22.1.5.2. Standard atomic volumes (p. 710) | html | pdf |
- 22.2. Molecular surfaces: calculations, uses and representations (pp. 713-720) | html | pdf | chapter contents |
- 22.2.1. Introduction (pp. 713-714) | html | pdf |
- 22.2.1.1. Uses of surface-area calculations (p. 713) | html | pdf |
- 22.2.1.2. Molecular, solvent-accessible and occluded surface areas (pp. 713-714) | html | pdf |
- 22.2.1.3. Hydration surface (p. 714) | html | pdf |
- 22.2.1.4. Hydrophobicity (p. 714) | html | pdf |
- 22.2.2. Calculation of surface area and energies of interaction (pp. 714-715) | html | pdf |
- 22.2.2.1. Introduction (p. 714) | html | pdf |
- 22.2.2.2. Lee & Richards planar slices (p. 714) | html | pdf |
- 22.2.2.3. Connolly dot surface algorithm (p. 714) | html | pdf |
- 22.2.2.4. Marching-cube algorithm (p. 714) | html | pdf |
- 22.2.2.5. Complete and connected rolling algorithms (pp. 714-715) | html | pdf |
- 22.2.2.6. Analytic surface calculations and the Gauss–Bonnet theorem (p. 715) | html | pdf |
- 22.2.2.7. Approximations to the surface (p. 715) | html | pdf |
- 22.2.2.8. Extended atoms account for missing hydrogen atoms (p. 715) | html | pdf |
- 22.2.3. Estimation of binding energies (pp. 715-717) | html | pdf |
- 22.2.3.1. Hydrophobicity (pp. 715-716) | html | pdf |
- 22.2.3.2. Estimates of binding energies (p. 716) | html | pdf |
- 22.2.3.3. Other non-graphical interpretive methods using surface area (pp. 716-717) | html | pdf |
- 22.2.4. Graphical representations of shape and properties (pp. 717-719) | html | pdf |
- 22.2.4.1. Realistic (pp. 717-718) | html | pdf |
- 22.2.4.1.1. Shaded backbone (p. 717) | html | pdf |
- 22.2.4.1.2. `Connolly' and solid polyhedral surfaces (p. 717) | html | pdf |
- 22.2.4.1.3. Photorealistic rendering (pp. 717-718) | html | pdf |
- 22.2.4.1.4. GRASP surfaces (p. 718) | html | pdf |
- 22.2.4.1.5. Implementations in popular packages (p. 718) | html | pdf |
- 22.2.4.2. Schematic and two-dimensional representations such as `roadmap' (p. 719) | html | pdf |
- 22.2.5. Conclusion (p. 719) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 22.2.3.1. The atomic solvation parameters of Eisenberg & McLachlan (1986) (p. 715) | html | pdf |
- 22.3. Hydrogen bonding in biological macromolecules (pp. 721-729) | html | pdf | chapter contents |
- 22.3.1. Introduction (p. 721) | html | pdf |
- 22.3.2. Nature of the hydrogen bond (p. 721) | html | pdf |
- 22.3.3. Hydrogen-bonding groups (pp. 721-722) | html | pdf |
- 22.3.3.1. Proteins (pp. 721-722) | html | pdf |
- 22.3.3.2. Nucleic acids (p. 722) | html | pdf |
- 22.3.4. Identification of hydrogen bonds: geometrical considerations (pp. 722-723) | html | pdf |
- 22.3.5. Hydrogen bonding in proteins (pp. 723-726) | html | pdf |
- 22.3.5.1. Contribution to protein folding, stability and function (p. 723) | html | pdf |
- 22.3.5.2. Saturation of hydrogen-bond potential (p. 723) | html | pdf |
- 22.3.5.3. Secondary structures (pp. 723-724) | html | pdf |
- 22.3.5.3.1. Helices (pp. 723-724) | html | pdf |
- 22.3.5.3.2. β-sheets (p. 724) | html | pdf |
- 22.3.5.3.3. Turns (p. 724) | html | pdf |
- 22.3.5.3.4. Aspects of in-plane geometry (p. 724) | html | pdf |
- 22.3.5.4. Side-chain hydrogen bonding (pp. 724-725) | html | pdf |
- 22.3.5.5. Hydrogen bonds with water molecules (pp. 725-726) | html | pdf |
- 22.3.6. Hydrogen bonding in nucleic acids (pp. 726-727) | html | pdf |
- 22.3.6.1. DNA (p. 726) | html | pdf |
- 22.3.6.2. RNA (pp. 726-727) | html | pdf |
- 22.3.7. Non-conventional hydrogen bonds (pp. 727-728) | html | pdf |
- 22.3.7.1. C—H···O hydrogen bonds (p. 727) | html | pdf |
- 22.3.7.2. Hydrogen bonds involving sulfur atoms (p. 727) | html | pdf |
- 22.3.7.3. Amino–aromatic hydrogen bonding (p. 728) | html | pdf |
- References
| html | pdf |
- Figures
- 22.4. Electrostatic interactions in proteins (pp. 730-735) | html | pdf | chapter contents |
- 22.4.1. Introduction (p. 730) | html | pdf |
- 22.4.2. Theory (pp. 730-732) | html | pdf |
- 22.4.2.1. The response of the system to electrostatic fields (pp. 730-731) | html | pdf |
- 22.4.2.2. Dependence of the potential on the charge distribution (p. 731) | html | pdf |
- 22.4.2.3. The concepts of screening, reaction potentials, solvation, dielectric, polarity and polarizability (pp. 731-732) | html | pdf |
- 22.4.2.4. Calculation of energies and forces (p. 732) | html | pdf |
- 22.4.2.5. Numerical methods (p. 732) | html | pdf |
- 22.4.3. Applications (pp. 732-734) | html | pdf |
- 22.4.3.1. Electrostatic potential distributions (pp. 732-733) | html | pdf |
- 22.4.3.2. Charge-transfer equilibria (pp. 733-734) | html | pdf |
- 22.4.3.3. Electrostatic contributions to binding energy (p. 734) | html | pdf |
- References
| html | pdf |
- Figures
- 22.5. The relevance of the Cambridge Structural Database in protein crystallography (pp. 736-748) | html | pdf | chapter contents |
- 22.5.1. Introduction (p. 736) | html | pdf |
- 22.5.2. The CSD and the PDB: data acquisition and data quality (pp. 736-737) | html | pdf |
- 22.5.2.1. Statistical inferences (p. 736) | html | pdf |
- 22.5.2.2. Data acquisition and completeness (p. 737) | html | pdf |
- 22.5.2.3. Standard formats: CIF and mmCIF (p. 737) | html | pdf |
- 22.5.2.4. Structure validation (p. 737) | html | pdf |
- 22.5.3. Structural knowledge from the CSD (pp. 737-738) | html | pdf |
- 22.5.3.1. The CSD software system (p. 737) | html | pdf |
- 22.5.3.2. CSD structures and substructures of relevance to protein studies (p. 737) | html | pdf |
- 22.5.3.3. Geometrical parameters of relevance to protein studies (pp. 737-738) | html | pdf |
- 22.5.4. Intramolecular geometry (pp. 738-740) | html | pdf |
- 22.5.4.1. Mean molecular dimensions (pp. 738-739) | html | pdf |
- 22.5.4.2. Conformational information (p. 739) | html | pdf |
- 22.5.4.3. Crystallographic conformations and energies (pp. 739-740) | html | pdf |
- 22.5.4.4. Conformational libraries (p. 740) | html | pdf |
- 22.5.4.5. Metal coordination geometry (p. 740) | html | pdf |
- 22.5.5. Intermolecular data (pp. 740-745) | html | pdf |
- 22.5.5.1. van der Waals radii (p. 740) | html | pdf |
- 22.5.5.2. Hydrogen-bond geometry and directionality (pp. 740-741) | html | pdf |
- 22.5.5.3. C—H···X hydrogen bonds (pp. 741-742) | html | pdf |
- 22.5.5.4. O—H···π and N—H···π hydrogen bonds (p. 742) | html | pdf |
- 22.5.5.5. Other non-covalent interactions (p. 742) | html | pdf |
- 22.5.5.6. Intermolecular motif formation in small-molecule crystal structures (pp. 742-743) | html | pdf |
- 22.5.5.7. The answer `no' (p. 743) | html | pdf |
- 22.5.5.8. IsoStar: a library of non-bonded interactions (p. 743) | html | pdf |
- 22.5.5.9. Protein–ligand binding (pp. 743-745) | html | pdf |
- 22.5.5.10. Modelling applications that use CSD data (p. 745) | html | pdf |
- 22.5.6. Conclusion (p. 745) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 22.5.3.1. Summary of amino-acid and peptide structures available in the CSD (April 1998, 181 309 entries) (p. 738) | html | pdf |
- Table 22.5.3.2. CSD entry statistics for selected metal-containing structures (p. 738) | html | pdf |
- Table 22.5.5.1. Residual densities for carboxylic acid groups (p. 745) | html | pdf |
- Structural analysis and classification
- 23.2. Locating domains in three-dimensional structures (pp. 752-754) | html | pdf | chapter contents |
- 23.2.1. Introduction (p. 752) | html | pdf |
- 23.2.2. Compactness (p. 752) | html | pdf |
- 23.2.3. Recurrence (pp. 752-753) | html | pdf |
- 23.2.4. Conclusion (p. 753) | html | pdf |
- References
| html | pdf |
- Figures
- 23.3. Protein–ligand interactions (pp. 755-765) | html | pdf | chapter contents |
- 23.3.1. Introduction (p. 755) | html | pdf |
- 23.3.2. Protein–carbohydrate interactions (pp. 755-756) | html | pdf |
- 23.3.2.1. Carbohydrate recognition at the atomic level (pp. 755-756) | html | pdf |
- 23.3.3. Metals (pp. 756-757) | html | pdf |
- 23.3.3.1. Metals important in protein function and structure (pp. 756-757) | html | pdf |
- 23.3.4. Protein–nucleic acid interactions (pp. 757-760) | html | pdf |
- 23.3.4.1. The DNA double helix (pp. 757-759) | html | pdf |
- 23.3.4.2. Single-stranded sequence-nonspecific DNA–protein interactions (p. 759) | html | pdf |
- 23.3.4.3. RNA (p. 759) | html | pdf |
- 23.3.4.4. Transfer RNA (p. 759) | html | pdf |
- 23.3.4.5. Stem loops (pp. 759-760) | html | pdf |
- 23.3.4.6. Single-stranded sequence-nonspecific RNA–protein interactions (p. 760) | html | pdf |
- 23.3.4.7. The recognition of alkylated bases (p. 760) | html | pdf |
- 23.3.5. Phosphate and sulfate (pp. 761-763) | html | pdf |
- 23.3.5.1. Dominant role of local dipoles in stabilization of isolated charges (p. 762) | html | pdf |
- 23.3.5.2. Short hydrogen bonds (p. 763) | html | pdf |
- 23.3.5.3. Non-complementary negative electrostatic surface potential of protein sites specific for anions (p. 763) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.3.3.1. Metal ions associated with proteins (p. 756) | html | pdf |
- 23.4. Nucleic acids (pp. 766-799) | html | pdf | chapter contents |
- 23.4.1. Introduction (p. 766) | html | pdf |
- 23.4.2. Helix parameters (pp. 766-773) | html | pdf |
- 23.4.2.1. Backbone geometry (p. 766) | html | pdf |
- 23.4.2.2. Sugar ring conformations (pp. 766-767) | html | pdf |
- 23.4.2.3. Base pairing (pp. 767-769) | html | pdf |
- 23.4.2.4. Helix parameters (pp. 770-773) | html | pdf |
- 23.4.2.5. Syn/anti glycosyl bond geometry (p. 773) | html | pdf |
- 23.4.3. Comparison of A, B and Z helices (pp. 773-779) | html | pdf |
- 23.4.3.1. x displacement and groove depth (p. 774) | html | pdf |
- 23.4.3.2. Glycosyl bond geometry (pp. 774-775) | html | pdf |
- 23.4.3.3. Sugar ring conformations (p. 775) | html | pdf |
- 23.4.3.4. Helical twist and rise, and propeller twist (pp. 775-777) | html | pdf |
- 23.4.3.5. Allowable RNA helices (p. 777) | html | pdf |
- 23.4.3.6. Biological applications of A, B and Z helices (pp. 777-778) | html | pdf |
- 23.4.3.7. `Watson–Crick' Z-DNA (pp. 778-779) | html | pdf |
- 23.4.4. Sequence–structure relationships in B-DNA (pp. 779-784) | html | pdf |
- 23.4.4.1. Sequence-dependent deformability (pp. 780-783) | html | pdf |
- 23.4.4.1.1. Minor groove width (pp. 780-781) | html | pdf |
- 23.4.4.1.2. Helix bending (pp. 781-783) | html | pdf |
- 23.4.4.2. A-tract bending (pp. 783-784) | html | pdf |
- 23.4.5. Summary (p. 784) | html | pdf |
- Appendix 23.4.1. X-ray analyses of A, B and Z helices (pp. 787-797) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.4.2.1. Average torsion-angle properties of A-, B- and Z-DNA (°) (p. 771) | html | pdf |
- Table 23.4.2.2. Sugar ring conformations, pseudorotation angles and torsion angle δ (p. 771) | html | pdf |
- Table 23.4.3.1. Comparison of structures of A, B and Z helices (p. 777) | html | pdf |
- Table 23.4.4.1. Sequence-dependent differential deformability in B-DNA. I. The Major Canon (p. 783) | html | pdf |
- Table 23.4.4.2. Sequence-dependent differential deformability in B-DNA. II. The Minor Canon (p. 785) | html | pdf |
- 23.5. Solvent structure (pp. 800-820) | html | pdf | chapter contents |
- 23.5.1. Introduction (pp. 800-801) | html | pdf |
- 23.5.2. Determination of water molecules (pp. 801-802) | html | pdf |
- 23.5.3. Structural features of protein–water interactions derived from database analysis (pp. 802-808) | html | pdf |
- 23.5.3.1. Water distribution around the individual amino-acid residues in protein structures (pp. 802-805) | html | pdf |
- 23.5.3.2. The effect of secondary structure on protein–water interactions (pp. 805-806) | html | pdf |
- 23.5.3.3. The effect of tertiary structure on protein–water interactions (pp. 806-807) | html | pdf |
- 23.5.3.4. Water mediation of protein–ligand interactions (pp. 807-808) | html | pdf |
- 23.5.4. Water structure in groups of well studied proteins (pp. 808-814) | html | pdf |
- 23.5.4.1. Crystal structures of homologous proteins (pp. 808-809) | html | pdf |
- 23.5.4.1.1. Serine proteases of the trypsin family (p. 808) | html | pdf |
- 23.5.4.1.2. Legume lectin family (pp. 808-809) | html | pdf |
- 23.5.4.2. Multiple crystal structures of the same protein (pp. 809-814) | html | pdf |
- 23.5.4.2.1. Elastase (pp. 809-812) | html | pdf |
- 23.5.4.2.2. T4 lysozyme (pp. 812-813) | html | pdf |
- 23.5.4.2.3. Ribonuclease T1 (p. 813) | html | pdf |
- 23.5.4.2.4. Ribonuclease A (pp. 813-814) | html | pdf |
- 23.5.4.2.5. Protein kinase A (p. 814) | html | pdf |
- 23.5.4.3. Summary (p. 814) | html | pdf |
- 23.5.5. The classic models: small proteins with high-resolution crystal structures (pp. 814-815) | html | pdf |
- 23.5.5.1. Crambin (pp. 814-815) | html | pdf |
- 23.5.5.2. Bovine pancreatic trypsin inhibitor (p. 815) | html | pdf |
- 23.5.5.3. Summary (p. 815) | html | pdf |
- 23.5.6. Water molecules as mediators of complex formation (pp. 815-817) | html | pdf |
- 23.5.6.1. Antigen–antibody association (pp. 815-816) | html | pdf |
- 23.5.6.2. Protein–DNA recognition (p. 816) | html | pdf |
- 23.5.6.3. Cooperativity in dimeric haemoglobin (pp. 816-817) | html | pdf |
- 23.5.6.4. Summary (p. 817) | html | pdf |
- 23.5.7. Conclusions and future perspectives (pp. 817-818) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.5.3.1. Specific hydrophilicity values for protein atoms (p. 804) | html | pdf |
- Table 23.5.4.1. Multiple-solvent crystal structures of elastase (p. 810) | html | pdf |
- 23.6. Halogen interactions in biomolecular crystal structures (pp. 821-826) | html | pdf | chapter contents |
- 23.6.1. Introduction (p. 821) | html | pdf |
- 23.6.2. Classical treatment of halogen interactions (pp. 821-822) | html | pdf |
- 23.6.2.1. Non-specific hydrophobic effects (p. 821) | html | pdf |
- 23.6.2.2. Substituent effects (pp. 821-822) | html | pdf |
- 23.6.3. Electrostatic molecular halogen interactions (pp. 822-825) | html | pdf |
- 23.6.3.1. Biological halogen bonds (pp. 822-825) | html | pdf |
- 23.6.3.2. Other halogen-specific electrostatic interactions in biological macromolecules (p. 825) | html | pdf |
- 23.6.4. Concluding remarks (p. 825) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.6.1.1. Interactions in crystal structures in the Protein Data Bank (p. 822) | html | pdf |
- Table 23.6.2.1. Physical properties of molecular halogens (p. 822) | html | pdf |
- Crystallographic databases
- 24.1. The Worldwide Protein Data Bank (pp. 827-832) | html | pdf | chapter contents |
- 24.1.1. Introduction (p. 827) | html | pdf |
- 24.1.2. Data acquisition and processing (pp. 827-829) | html | pdf |
- 24.1.2.1. Content of the data collected by the wwPDB (p. 827) | html | pdf |
- 24.1.2.2. Data deposition sites (p. 827) | html | pdf |
- 24.1.2.3. Validation and annotation (pp. 827-828) | html | pdf |
- 24.1.2.4. Data processing statistics (p. 829) | html | pdf |
- 24.1.2.5. Data uniformity (p. 829) | html | pdf |
- 24.1.3. Data access (pp. 829-831) | html | pdf |
- 24.1.3.1. ftp (p. 829) | html | pdf |
- 24.1.3.2. Websites (pp. 829-831) | html | pdf |
- 24.1.3.2.1. RCSB PDB (pp. 829-830) | html | pdf |
- 24.1.3.2.2. PDBj (p. 830) | html | pdf |
- 24.1.3.2.3. PDBe (pp. 830-831) | html | pdf |
- 24.1.3.2.4. BMRB (p. 831) | html | pdf |
- 24.1.4. Future (p. 831) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 24.1.2.1. Content of data in the PDB (p. 828) | html | pdf |
- 24.2. The Nucleic Acid Database (pp. 833-837) | html | pdf | chapter contents |
- 24.2.1. Introduction (p. 833) | html | pdf |
- 24.2.2. Data processing and validation (pp. 833-834) | html | pdf |
- 24.2.3. The database (pp. 834-835) | html | pdf |
- 24.2.3.1. Information content of the NDB (p. 834) | html | pdf |
- 24.2.3.2. User web access (p. 834) | html | pdf |
- 24.2.3.3. Query capabilities (p. 835) | html | pdf |
- 24.2.3.4. Atlas pages (p. 835) | html | pdf |
- 24.2.4. Distribution of information (p. 835) | html | pdf |
- 24.2.4.1. Structural coordinates and experimental data (p. 835) | html | pdf |
- 24.2.4.2. Standards and software tools (p. 835) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 24.2.3.1. The information content of the NDB (p. 834) | html | pdf |
- Table 24.2.3.2. Reports automatically generated for searches of the NDB (p. 835) | html | pdf |
- 24.3. The Biological Macromolecule Crystallization Database (pp. 838-842) | html | pdf | chapter contents |
- 24.3.1. Introduction (p. 838) | html | pdf |
- 24.3.2. History of the BMCD (p. 838) | html | pdf |
- 24.3.3. BMCD data (pp. 838-839) | html | pdf |
- 24.3.4. Web interface (p. 839) | html | pdf |
- 24.3.5. Reproducing published crystallization procedures (pp. 839-840) | html | pdf |
- 24.3.6. Crystallization screens (p. 840) | html | pdf |
- 24.3.7. A general crystallization procedure (pp. 840-841) | html | pdf |
- 24.3.8. The future of the BMCD (p. 841) | html | pdf |
- References
| html | pdf |
- Figures
- A historical perspective
- 25.1. How the structure of lysozyme was actually determined (pp. 845-872) | html | pdf | chapter contents |
- 25.1.1. Introduction (p. 845) | html | pdf |
- 25.1.2. Structure analysis at 6 Å resolution (pp. 845-854) | html | pdf |
- 25.1.2.1. Technical facilities (p. 845) | html | pdf |
- 25.1.2.2. Lysozyme crystallization (p. 846) | html | pdf |
- 25.1.2.3. Preparation of heavy-atom derivatives (pp. 846-847) | html | pdf |
- 25.1.2.4. Determination of heavy-atom positions (pp. 847-848) | html | pdf |
- 25.1.2.4.1. The mercuri-iodide (K2HgI4) derivative (p. 847) | html | pdf |
- 25.1.2.4.2. The palladium chloride (K2PdCl4) derivative (p. 847) | html | pdf |
- 25.1.2.4.3. The o-mercurihydroxytoluene p-sulfonate (MHTS) derivative (p. 847) | html | pdf |
- 25.1.2.4.4. Other potential derivatives (pp. 847-848) | html | pdf |
- 25.1.2.5. Refinement of heavy-atom parameters (p. 848) | html | pdf |
- 25.1.2.6. Analysis in three dimensions (pp. 848-852) | html | pdf |
- 25.1.2.6.1. X-ray intensity measurements (pp. 848-850) | html | pdf |
- 25.1.2.6.2. Data processing (pp. 850-851) | html | pdf |
- 25.1.2.6.3. The absolute scale of the intensities (p. 851) | html | pdf |
- 25.1.2.6.4. Re-assessment of heavy-atom derivatives (pp. 851-852) | html | pdf |
- 25.1.2.7. Phase determination at 6 Å resolution (p. 852) | html | pdf |
- 25.1.2.8. The electron-density map of lysozyme at 6 Å resolution (pp. 853-854) | html | pdf |
- 25.1.3. Analysis of the structure at 2 Å resolution (pp. 854-866) | html | pdf |
- 25.1.3.1. Heavy-atom derivatives at 2 Å resolution (pp. 855-856) | html | pdf |
- 25.1.3.2. Intensity measurements (pp. 856-858) | html | pdf |
- 25.1.3.3. The second low-resolution map at 6 Å (p. 858) | html | pdf |
- 25.1.3.4. Intensity measurements at high resolution (pp. 858-859) | html | pdf |
- 25.1.3.4.1. Experimental methods (pp. 858-859) | html | pdf |
- 25.1.3.4.2. Diffractometer output (p. 859) | html | pdf |
- 25.1.3.5. Data processing (pp. 859-860) | html | pdf |
- 25.1.3.5.1. Absorption corrections (p. 860) | html | pdf |
- 25.1.3.6. Further stages of data processing (pp. 860-861) | html | pdf |
- 25.1.3.7. The crystal-type problem (pp. 861-862) | html | pdf |
- 25.1.3.8. Final refinement of heavy-atom parameters (p. 862) | html | pdf |
- 25.1.3.9. Calculation of phase values (pp. 862-863) | html | pdf |
- 25.1.3.10. The electron-density map at 2 Å resolution (pp. 863-864) | html | pdf |
- 25.1.3.11. Map interpretation and model building (pp. 864-866) | html | pdf |
- 25.1.4. Structural studies on the biological function of lysozyme (pp. 866-871) | html | pdf |
- 25.1.4.1. Lysozyme substrates (p. 866) | html | pdf |
- 25.1.4.2. The crystal structure of GlcNAc (pp. 866-867) | html | pdf |
- 25.1.4.3. Low-resolution binding studies of lysozyme with GlcNAc and other sugars (p. 867) | html | pdf |
- 25.1.4.4. Binding studies of lysozyme with tri-N-acetyl-chitotriose, (GlcNAc)3, at 2 Å resolution (pp. 867-868) | html | pdf |
- 25.1.4.5. Proposals for the catalytic mechanism of lysozyme (pp. 868-871) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 25.1.2.1. Heavy-atom parameters used in the final phase calculation for the lysozyme structure (p. 852) | html | pdf |
- Table 25.1.3.1. Structure amplitudes of the reflections from crystal types I and II (p. 861) | html | pdf |
- Table 25.1.3.2. Heavy-atom parameters for the 2 Å structure (p. 862) | html | pdf |
- Table 25.1.3.3. Discrepancies in amino-acid sequences (excluding Asp/Asn) (p. 865) | html | pdf |