International Tables for Crystallography
Volume D: Physical properties of crystals
Second online edition (2013) ISBN: 978-1-118-76229-5 doi: 10.1107/97809553602060000113
Edited by A. Authier
Contents
- Preface to the second edition (p. xii) | html | pdf |
- Tensorial aspects of physical properties
- 1.1. Introduction to the properties of tensors (pp. 3-34) | html | pdf | chapter contents |
- 1.1.1. The matrix of physical properties (pp. 3-5) | html | pdf |
- 1.1.1.1. Notion of extensive and intensive quantities (p. 3) | html | pdf |
- 1.1.1.2. Notion of tensor in physics (pp. 3-4) | html | pdf |
- 1.1.1.3. The matrix of physical properties (p. 4) | html | pdf |
- 1.1.1.4. Symmetry of the matrix of physical properties (pp. 4-5) | html | pdf |
- 1.1.1.5. Onsager relations (p. 5) | html | pdf |
- 1.1.2. Basic properties of vector spaces (pp. 5-7) | html | pdf |
- 1.1.2.1. Change of basis (p. 5) | html | pdf |
- 1.1.2.2. Metric tensor (p. 5) | html | pdf |
- 1.1.2.3. Orthonormal frames of coordinates – rotation matrix (pp. 5-6) | html | pdf |
- 1.1.2.4. Covariant coordinates – dual or reciprocal space (pp. 6-7) | html | pdf |
- 1.1.2.4.1. Covariant coordinates (p. 6) | html | pdf |
- 1.1.2.4.2. Reciprocal space (p. 6) | html | pdf |
- 1.1.2.4.3. Properties of the metric tensor (pp. 6-7) | html | pdf |
- 1.1.3. Mathematical notion of tensor (pp. 7-10) | html | pdf |
- 1.1.3.1. Definition of a tensor (p. 7) | html | pdf |
- 1.1.3.1.1. Linear forms (p. 7) | html | pdf |
- 1.1.3.1.2. Tensor product (p. 7) | html | pdf |
- 1.1.3.2. Behaviour under a change of basis (p. 7) | html | pdf |
- 1.1.3.3. Operations on tensors (pp. 7-8) | html | pdf |
- 1.1.3.3.1. Addition (p. 7) | html | pdf |
- 1.1.3.3.2. Multiplication by a scalar (p. 8) | html | pdf |
- 1.1.3.3.3. Contracted product, contraction (p. 8) | html | pdf |
- 1.1.3.4. Tensor nature of physical quantities (p. 8) | html | pdf |
- 1.1.3.5. Representation surface of a tensor (pp. 8-9) | html | pdf |
- 1.1.3.5.1. Definition (p. 8) | html | pdf |
- 1.1.3.5.2. Representation surfaces of second-rank tensors (pp. 8-9) | html | pdf |
- 1.1.3.5.3. Representation surfaces of higher-rank tensors (p. 9) | html | pdf |
- 1.1.3.6. Change of variance of the components of a tensor (p. 9) | html | pdf |
- 1.1.3.6.1. Tensor nature of the metric tensor (p. 9) | html | pdf |
- 1.1.3.6.2. How to change the variance of the components of a tensor (p. 9) | html | pdf |
- 1.1.3.6.3. Examples of the use in physics of different representations of the same quantity (p. 9) | html | pdf |
- 1.1.3.7. Outer product (pp. 9-10) | html | pdf |
- 1.1.3.7.1. Definition (p. 9) | html | pdf |
- 1.1.3.7.2. Vector product (p. 10) | html | pdf |
- 1.1.3.7.3. Properties of the vector product (p. 10) | html | pdf |
- 1.1.3.8. Tensor derivatives (p. 10) | html | pdf |
- 1.1.3.8.1. Interpretation of the coefficients of the matrix – change of coordinates (p. 10) | html | pdf |
- 1.1.3.8.2. Generalization (p. 10) | html | pdf |
- 1.1.3.8.3. Differential operators (p. 10) | html | pdf |
- 1.1.3.8.4. Development of a vector function in a Taylor series (p. 10) | html | pdf |
- 1.1.4. Symmetry properties (pp. 10-31) | html | pdf |
- 1.1.4.1. Introduction – Neumann's principle (p. 11) | html | pdf |
- 1.1.4.2. Curie laws (p. 11) | html | pdf |
- 1.1.4.3. Symmetries associated with an electric field and with magnetic induction (flux density) (pp. 11-12) | html | pdf |
- 1.1.4.3.1. Symmetry of an electric field (pp. 11-12) | html | pdf |
- 1.1.4.3.2. Symmetry of magnetic induction (p. 12) | html | pdf |
- 1.1.4.4. Superposition of several causes in the same medium – pyroelectricity and piezolectricity (p. 12) | html | pdf |
- 1.1.4.4.1. Introduction (p. 12) | html | pdf |
- 1.1.4.4.2. Pyroelectricity (p. 12) | html | pdf |
- 1.1.4.4.3. Piezoelectricity (pp. 12-13) | html | pdf |
- 1.1.4.5. Intrinsic symmetry of tensors (pp. 12-14) | html | pdf |
- 1.1.4.5.1. Introduction (p. 13) | html | pdf |
- 1.1.4.5.2. Symmetric tensors (p. 13) | html | pdf |
- 1.1.4.5.2.1. Tensors of rank 2 (p. 13) | html | pdf |
- 1.1.4.5.2.2. Tensors of higher rank (p. 13) | html | pdf |
- 1.1.4.5.3. Antisymmetric tensors – axial tensors (pp. 13-14) | html | pdf |
- 1.1.4.5.3.1. Tensors of rank 2 (pp. 13-14) | html | pdf |
- 1.1.4.5.3.2. Tensors of higher rank (p. 14) | html | pdf |
- 1.1.4.5.3.3. Properties of axial tensors (p. 14) | html | pdf |
- 1.1.4.6. Symmetry of tensors imposed by the crystalline medium (pp. 14-16) | html | pdf |
- 1.1.4.6.1. Matrix method – application of Neumann's principle (p. 15) | html | pdf |
- 1.1.4.6.2. The operator A is in diagonal form (pp. 15-16) | html | pdf |
- 1.1.4.6.2.1. Introduction (p. 15) | html | pdf |
- 1.1.4.6.2.2. Case of a centre of symmetry (p. 15) | html | pdf |
- 1.1.4.6.2.3. General case (pp. 15-16) | html | pdf |
- 1.1.4.6.3. The method of direct inspection (p. 16) | html | pdf |
- 1.1.4.7. Reduction of the components of a tensor of rank 2 (pp. 16-17) | html | pdf |
- 1.1.4.7.1. Triclinic system (p. 16) | html | pdf |
- 1.1.4.7.2. Monoclinic system (p. 16) | html | pdf |
- 1.1.4.7.3. Orthorhombic system (p. 16) | html | pdf |
- 1.1.4.7.4. Trigonal, tetragonal, hexagonal and cylindrical systems (pp. 16-17) | html | pdf |
- 1.1.4.7.4.1. Groups , ; , , ; , , ; , (pp. 16-17) | html | pdf |
- 1.1.4.7.4.2. Groups , , ; , , , ; , , , ; , (p. 17) | html | pdf |
- 1.1.4.7.5. Cubic and spherical systems (p. 17) | html | pdf |
- 1.1.4.7.6. Symmetric tensors of rank 2 (p. 17) | html | pdf |
- 1.1.4.7.6.1. Triclinic system (p. 17) | html | pdf |
- 1.1.4.7.6.2. Monoclinic system (twofold axis parallel to ) (p. 17) | html | pdf |
- 1.1.4.7.6.3. Orthorhombic system (p. 17) | html | pdf |
- 1.1.4.7.6.4. Trigonal, tetragonal and hexagonal systems, isotropic groups (p. 17) | html | pdf |
- 1.1.4.7.6.5. Cubic system (p. 17) | html | pdf |
- 1.1.4.8. Reduction of the components of a tensor of rank 3 (pp. 17-20) | html | pdf |
- 1.1.4.8.1. Triclinic system (p. 17) | html | pdf |
- 1.1.4.8.1.1. Group (p. 17) | html | pdf |
- 1.1.4.8.1.2. Group (p. 17) | html | pdf |
- 1.1.4.8.2. Monoclinic system (p. 18) | html | pdf |
- 1.1.4.8.2.1. Group (p. 18) | html | pdf |
- 1.1.4.8.2.2. Group m (p. 18) | html | pdf |
- 1.1.4.8.2.3. Group (p. 18) | html | pdf |
- 1.1.4.8.3. Orthorhombic system (p. 18) | html | pdf |
- 1.1.4.8.3.1. Group (p. 18) | html | pdf |
- 1.1.4.8.3.2. Group (p. 18) | html | pdf |
- 1.1.4.8.3.3. Group (p. 18) | html | pdf |
- 1.1.4.8.4. Trigonal system (p. 18) | html | pdf |
- 1.1.4.8.4.1. Group (p. 18) | html | pdf |
- 1.1.4.8.4.2. Group with a twofold axis parallel to (p. 18) | html | pdf |
- 1.1.4.8.4.3. Group with a mirror normal to (p. 18) | html | pdf |
- 1.1.4.8.4.4. Groups and (p. 18) | html | pdf |
- 1.1.4.8.5. Tetragonal system (pp. 18-19) | html | pdf |
- 1.1.4.8.5.1. Group (pp. 18-19) | html | pdf |
- 1.1.4.8.5.2. Group (p. 19) | html | pdf |
- 1.1.4.8.5.3. Group (p. 19) | html | pdf |
- 1.1.4.8.5.4. Group (p. 19) | html | pdf |
- 1.1.4.8.5.5. Group (p. 19) | html | pdf |
- 1.1.4.8.5.6. Group (p. 19) | html | pdf |
- 1.1.4.8.5.7. Group (p. 19) | html | pdf |
- 1.1.4.8.6. Hexagonal and cylindrical systems (p. 19) | html | pdf |
- 1.1.4.8.6.1. Groups , , , , and (p. 19) | html | pdf |
- 1.1.4.8.6.2. Group (p. 19) | html | pdf |
- 1.1.4.8.6.3. Group (p. 19) | html | pdf |
- 1.1.4.8.6.4. Groups , , and (p. 19) | html | pdf |
- 1.1.4.8.7. Cubic and spherical systems (pp. 19-20) | html | pdf |
- 1.1.4.8.7.1. Group (p. 19) | html | pdf |
- 1.1.4.8.7.2. Groups and (p. 20) | html | pdf |
- 1.1.4.8.7.3. Group (p. 20) | html | pdf |
- 1.1.4.8.7.4. Groups , and (p. 20) | html | pdf |
- 1.1.4.9. Reduction of the components of a tensor of rank 4 (pp. 20-24) | html | pdf |
- 1.1.4.9.1. Triclinic system (groups , ) (p. 20) | html | pdf |
- 1.1.4.9.2. Monoclinic system (groups , , m) (p. 20) | html | pdf |
- 1.1.4.9.3. Orthorhombic system (groups , , ) (p. 20) | html | pdf |
- 1.1.4.9.4. Trigonal system (pp. 20-21) | html | pdf |
- 1.1.4.9.4.1. Groups and (p. 20) | html | pdf |
- 1.1.4.9.4.2. Groups , , , with the twofold axis parallel to (p. 21) | html | pdf |
- 1.1.4.9.5. Tetragonal system (p. 21) | html | pdf |
- 1.1.4.9.5.1. Groups , , (p. 21) | html | pdf |
- 1.1.4.9.5.2. Groups , , , (p. 21) | html | pdf |
- 1.1.4.9.6. Hexagonal and cylindrical systems (p. 21) | html | pdf |
- 1.1.4.9.6.1. Groups , , ; , (p. 21) | html | pdf |
- 1.1.4.9.6.2. Groups , , , ; ; , (p. 21) | html | pdf |
- 1.1.4.9.7. Cubic system (pp. 21-22) | html | pdf |
- 1.1.4.9.7.1. Groups , (p. 21) | html | pdf |
- 1.1.4.9.7.2. Groups , , (p. 22) | html | pdf |
- 1.1.4.9.8. Spherical system (p. 22) | html | pdf |
- 1.1.4.9.8.1. Groups and (p. 22) | html | pdf |
- 1.1.4.9.9. Symmetric tensors of rank 4 (pp. 22-24) | html | pdf |
- 1.1.4.9.9.1. Triclinic system (p. 22) | html | pdf |
- 1.1.4.9.9.2. Monoclinic system (p. 22) | html | pdf |
- 1.1.4.9.9.3. Orthorhombic system (p. 22) | html | pdf |
- 1.1.4.9.9.4. Trigonal system (pp. 22-23) | html | pdf |
- 1.1.4.9.9.5. Tetragonal system (p. 23) | html | pdf |
- 1.1.4.9.9.6. Hexagonal and cylindrical systems (p. 23) | html | pdf |
- 1.1.4.9.9.7. Cubic system (pp. 23-24) | html | pdf |
- 1.1.4.10. Reduced form of polar and axial tensors – matrix representation (pp. 24-31) | html | pdf |
- 1.1.4.10.1. Introduction (p. 24) | html | pdf |
- 1.1.4.10.2. Stress and strain tensors – Voigt matrices (p. 24) | html | pdf |
- 1.1.4.10.3. Reduction of the number of independent components of third-rank polar tensors due to the symmetry of the strain and stress tensors (pp. 24-25) | html | pdf |
- 1.1.4.10.4. Independent components of the matrix associated with a third-rank polar tensor according to the following point groups (pp. 25-26) | html | pdf |
- 1.1.4.10.4.1. Triclinic system (p. 25) | html | pdf |
- 1.1.4.10.4.2. Monoclinic system (p. 25) | html | pdf |
- 1.1.4.10.4.3. Orthorhombic system (p. 25) | html | pdf |
- 1.1.4.10.4.4. Trigonal system (p. 25) | html | pdf |
- 1.1.4.10.4.5. Tetragonal, hexagonal and cylindrical systems (pp. 25-26) | html | pdf |
- 1.1.4.10.4.6. Cubic and spherical systems (p. 26) | html | pdf |
- 1.1.4.10.5. Reduction of the number of independent components of fourth-rank polar tensors due to the symmetry of the strain and stress tensors (pp. 26-27) | html | pdf |
- 1.1.4.10.6. Independent components of the matrix associated with a fourth-rank tensor according to the following point groups (pp. 27-29) | html | pdf |
- 1.1.4.10.6.1. Triclinic system, groups , (p. 27) | html | pdf |
- 1.1.4.10.6.2. Monoclinic system (p. 27) | html | pdf |
- 1.1.4.10.6.3. Orthorhombic system (p. 27) | html | pdf |
- 1.1.4.10.6.4. Trigonal system (p. 28) | html | pdf |
- 1.1.4.10.6.5. Tetragonal system (p. 28) | html | pdf |
- 1.1.4.10.6.6. Hexagonal system (pp. 28-29) | html | pdf |
- 1.1.4.10.6.7. Cubic system (p. 29) | html | pdf |
- 1.1.4.10.6.8. Spherical system (p. 29) | html | pdf |
- 1.1.4.10.7. Reduction of the number of independent components of axial tensors of rank 2 (pp. 29-31) | html | pdf |
- 1.1.4.10.7.1. Independent components according to the following point groups (pp. 29-30) | html | pdf |
- 1.1.4.10.7.2. Independent components of symmetric axial tensors according to the following point groups (pp. 30-31) | html | pdf |
- 1.1.5. Thermodynamic functions and physical property tensors (pp. 31-32) | html | pdf |
- 1.1.5.1. Isothermal study (p. 31) | html | pdf |
- 1.1.5.2. Other forms of the piezoelectric constants (p. 32) | html | pdf |
- 1.1.5.3. Relation between the pyroelectric coefficients at constant stress and at constant strain (p. 32) | html | pdf |
- 1.1.5.4. Adiabatic study (p. 32) | html | pdf |
- 1.1.6. Glossary (pp. 32-33) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.1.1.1. Extensive quantities and associated intensive parameters (p. 3) | html | pdf |
- 1.2. Representations of crystallographic groups (pp. 34-71) | html | pdf | chapter contents |
- 1.2.1. Introduction (pp. 34-35) | html | pdf |
- 1.2.2. Point groups (pp. 35-46) | html | pdf |
- 1.2.2.1. Finite point groups in one, two and three dimensions (pp. 35-36) | html | pdf |
- 1.2.2.2. Representations of finite groups (pp. 36-37) | html | pdf |
- 1.2.2.3. General tensors (pp. 37-38) | html | pdf |
- 1.2.2.4. Orthogonality relations (pp. 38-39) | html | pdf |
- 1.2.2.5. Characters (pp. 39-40) | html | pdf |
- 1.2.2.6. The representations for point groups in one, two and three dimensions (pp. 40-42) | html | pdf |
- 1.2.2.7. Tensor representations (pp. 42-43) | html | pdf |
- 1.2.2.8. Projective representations (pp. 43-45) | html | pdf |
- 1.2.2.9. Double groups and their representations (pp. 45-46) | html | pdf |
- 1.2.3. Space groups (pp. 46-51) | html | pdf |
- 1.2.3.1. Structure of space groups (pp. 46-47) | html | pdf |
- 1.2.3.2. Irreducible representations of lattice translation groups (p. 47) | html | pdf |
- 1.2.3.3. Irreducible representations of space groups (pp. 47-49) | html | pdf |
- 1.2.3.4. Characterization of space-group representations (pp. 49-50) | html | pdf |
- 1.2.3.5. Double space groups and their representations (pp. 50-51) | html | pdf |
- 1.2.4. Tensors (pp. 51-53) | html | pdf |
- 1.2.4.1. Transformation properties of tensors (pp. 51-52) | html | pdf |
- 1.2.4.2. Invariants (p. 52) | html | pdf |
- 1.2.4.3. Clebsch–Gordan coefficients (pp. 52-53) | html | pdf |
- 1.2.5. Magnetic symmetry (pp. 53-56) | html | pdf |
- 1.2.5.1. Magnetic point groups (p. 53) | html | pdf |
- 1.2.5.2. Magnetic space groups (pp. 53-54) | html | pdf |
- 1.2.5.3. Transformation of tensors (p. 54) | html | pdf |
- 1.2.5.4. Time-reversal operators (pp. 54-55) | html | pdf |
- 1.2.5.5. Co-representations (pp. 55-56) | html | pdf |
- 1.2.6. Tables (pp. 56-62) | html | pdf |
- 1.2.7. Introduction to the accompanying software Tenχar (pp. 62-70) | html | pdf |
- 1.2.7.1. Overview (pp. 62-64) | html | pdf |
- 1.2.7.2. Tensors (pp. 64-66) | html | pdf |
- 1.2.7.3. Characters (pp. 66-67) | html | pdf |
- 1.2.7.4. Algorithms (pp. 67-70) | html | pdf |
- 1.2.7.4.1. Construction of a basis (p. 67) | html | pdf |
- 1.2.7.4.2. Action of the generators of the point group G on the basis (p. 67) | html | pdf |
- 1.2.7.4.3. Diagonalization of the action matrix and determination of the invariant tensor (pp. 67-68) | html | pdf |
- 1.2.7.4.4. Determination of the vector representation (p. 68) | html | pdf |
- 1.2.7.4.5. Determination of tensor products and their decomposition (p. 68) | html | pdf |
- 1.2.7.4.6. Invariant tensors (pp. 68-70) | html | pdf |
- 1.2.8. Glossary (pp. 70-71) | html | pdf |
- References
| html | pdf |
- Tables
- Table 1.2.2.1. Character table for (p. 40) | html | pdf |
- Table 1.2.2.2. Character table of (p. 44) | html | pdf |
- Table 1.2.3.1. Choices of in the fundamental domain of and the elements of (p. 49) | html | pdf |
- Table 1.2.3.2. Strata of irreducible representations of and (p. 49) | html | pdf |
- Table 1.2.3.3. Characteristic values of for the projective irreps of for the point group (p. 50) | html | pdf |
- Table 1.2.5.1. Character of the representations corresponding to the electric and magnetic fields in point groups , and (p. 54) | html | pdf |
- Table 1.2.6.1. Finite point groups in three dimensions (p. 57) | html | pdf |
- Table 1.2.6.2. Crystallographic point groups in three dimensions (p. 57) | html | pdf |
- Table 1.2.6.3. Irreducible representations for cyclic groups (p. 57) | html | pdf |
- Table 1.2.6.4. Irreducible representations for dihedral groups (p. 57) | html | pdf |
- Table 1.2.6.5. Irreducible representations and character tables for the 32 crystallographic point groups in three dimensions (pp. 58-60) | html | pdf |
- Table 1.2.6.6. Direct products with and (p. 60) | html | pdf |
- Table 1.2.6.7. Extra representations of double point groups (p. 61) | html | pdf |
- Table 1.2.6.8. Projective spin representations of the 32 crystallographic point groups (p. 61) | html | pdf |
- Table 1.2.6.9. Number of free parameters of some tensors (p. 62) | html | pdf |
- Table 1.2.6.10. Irreducible projective representations of the 32 crystallographic point groups (pp. 63-64) | html | pdf |
- Table 1.2.6.11. Special points in the Brillouin zones in three dimensions (pp. 65-66) | html | pdf |
- Table 1.2.6.12. Magnetic point groups (p. 66) | html | pdf |
- Table 1.2.7.1. Data connected with the character table for point group (p. 67) | html | pdf |
- Table 1.2.7.2. Calculation with characters (p. 69) | html | pdf |
- 1.3. Elastic properties (pp. 72-100) | html | pdf | chapter contents |
- 1.3.1. Strain tensor (pp. 72-76) | html | pdf |
- 1.3.1.1. Introduction, the notion of strain field (p. 72) | html | pdf |
- 1.3.1.2. Homogeneous deformation (pp. 72-74) | html | pdf |
- 1.3.1.2.1. Fundamental property of the homogeneous deformation (p. 72) | html | pdf |
- 1.3.1.2.2. Spontaneous strain (p. 72) | html | pdf |
- 1.3.1.2.3. Cubic dilatation (pp. 72-73) | html | pdf |
- 1.3.1.2.4. Expression of any homogeneous deformation as the product of a pure rotation and a pure deformation (p. 73) | html | pdf |
- 1.3.1.2.5. Quadric of elongations (pp. 73-74) | html | pdf |
- 1.3.1.3. Arbitrary but small deformations (pp. 74-75) | html | pdf |
- 1.3.1.3.1. Definition of the strain tensor (pp. 74-75) | html | pdf |
- 1.3.1.3.2. Geometrical interpretation of the coefficients of the strain tensor (p. 75) | html | pdf |
- 1.3.1.4. Particular components of the deformation (pp. 75-76) | html | pdf |
- 1.3.1.4.1. Simple elongation (p. 75) | html | pdf |
- 1.3.1.4.2. Pure shear (p. 76) | html | pdf |
- 1.3.1.4.3. Simple shear (p. 76) | html | pdf |
- 1.3.2. Stress tensor (pp. 76-80) | html | pdf |
- 1.3.2.1. General conditions of equilibrium of a solid (p. 76) | html | pdf |
- 1.3.2.2. Definition of the stress tensor (pp. 76-77) | html | pdf |
- 1.3.2.3. Condition of continuity (p. 77) | html | pdf |
- 1.3.2.4. Symmetry of the stress tensor (pp. 77-78) | html | pdf |
- 1.3.2.5. Voigt's notation – interpretation of the components of the stress tensor (p. 78) | html | pdf |
- 1.3.2.5.1. Voigt's notation, reduced form of the stress tensor (p. 78) | html | pdf |
- 1.3.2.5.2. Interpretation of the components of the stress tensor – special forms of the stress tensor (p. 78) | html | pdf |
- 1.3.2.6. Boundary conditions (pp. 78-79) | html | pdf |
- 1.3.2.7. Local properties of the stress tensor (p. 79) | html | pdf |
- 1.3.2.8. Energy density in a deformed medium (pp. 79-80) | html | pdf |
- 1.3.3. Linear elasticity (pp. 80-85) | html | pdf |
- 1.3.3.1. Hooke's law (pp. 80-81) | html | pdf |
- 1.3.3.2. Elastic constants (pp. 81-82) | html | pdf |
- 1.3.3.2.1. Definition (p. 81) | html | pdf |
- 1.3.3.2.2. Matrix notation – reduction of the number of independent components (pp. 81-82) | html | pdf |
- 1.3.3.2.3. Passage from elastic compliances to elastic stiffnesses (p. 82) | html | pdf |
- 1.3.3.3. Elastic strain energy (pp. 82-83) | html | pdf |
- 1.3.3.4. Particular elastic constants (pp. 83-84) | html | pdf |
- 1.3.3.4.1. Volume compressibility (p. 83) | html | pdf |
- 1.3.3.4.2. Linear compressibility (p. 83) | html | pdf |
- 1.3.3.4.3. Young's modulus, Poisson's ratio (p. 83) | html | pdf |
- 1.3.3.4.4. Variation of Young's modulus with orientation (p. 84) | html | pdf |
- 1.3.3.5. Isotropic materials (pp. 84-85) | html | pdf |
- 1.3.3.6. Equilibrium conditions of elasticity for isotropic media (pp. 85-86) | html | pdf |
- 1.3.4. Propagation of elastic waves in continuous media – dynamic elasticity (pp. 86-89) | html | pdf |
- 1.3.4.1. Introduction (p. 86) | html | pdf |
- 1.3.4.2. Equation of propagation of a wave in a material (p. 86) | html | pdf |
- 1.3.4.3. Dynamic elastic stiffnesses (pp. 86-87) | html | pdf |
- 1.3.4.4. Polarization of the elastic waves (p. 87) | html | pdf |
- 1.3.4.5. Relation between velocity of propagation and elastic stiffnesses (pp. 87-88) | html | pdf |
- 1.3.4.5.1. Cubic crystals (p. 87) | html | pdf |
- 1.3.4.5.2. Hexagonal crystals (p. 87) | html | pdf |
- 1.3.4.5.3. Tetragonal crystals (classes , , ) (pp. 87-88) | html | pdf |
- 1.3.4.6. Experimental determination of elastic constants (pp. 88-89) | html | pdf |
- 1.3.4.6.1. Introduction (p. 88) | html | pdf |
- 1.3.4.6.2. Resonance technique (p. 88) | html | pdf |
- 1.3.4.6.3. Pulse-echo techniques (pp. 88-89) | html | pdf |
- 1.3.5. Pressure dependence and temperature dependence of the elastic constants (pp. 89-91) | html | pdf |
- 1.3.5.1. Introduction (pp. 89-90) | html | pdf |
- 1.3.5.2. Temperature dependence of the elastic constants (pp. 90-91) | html | pdf |
- 1.3.5.3. Pressure dependence of the elastic constants (p. 91) | html | pdf |
- 1.3.6. Nonlinear elasticity (pp. 92-95) | html | pdf |
- 1.3.6.1. Introduction (p. 92) | html | pdf |
- 1.3.6.2. Lagrangian and Eulerian descriptions (p. 92) | html | pdf |
- 1.3.6.3. Strain and stress tensors (pp. 92-93) | html | pdf |
- 1.3.6.4. Second-order and higher-order elastic stiffnesses (p. 93) | html | pdf |
- 1.3.6.5. Expansion of elastic constants for small initial stress (pp. 93-94) | html | pdf |
- 1.3.6.6. Elastic strain-energy density (pp. 94-95) | html | pdf |
- 1.3.7. Nonlinear dynamic elasticity (pp. 95-98) | html | pdf |
- 1.3.7.1. Introduction (p. 95) | html | pdf |
- 1.3.7.2. Equation of motion for elastic waves (p. 95) | html | pdf |
- 1.3.7.3. Wave propagation in a nonlinear elastic medium (pp. 95-97) | html | pdf |
- 1.3.7.3.1. Isotropic media (p. 96) | html | pdf |
- 1.3.7.3.2. Cubic media (most symmetrical groups) (pp. 96-97) | html | pdf |
- 1.3.7.4. Harmonic generation (p. 97) | html | pdf |
- 1.3.7.5. Small-amplitude waves in a strained medium (p. 97) | html | pdf |
- 1.3.7.6. Experimental determination of third- and higher-order elastic constants (pp. 97-98) | html | pdf |
- 1.3.8. Glossary (p. 98) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.3.2.1. Stresses applied to the faces surrounding a volume element (p. 77) | html | pdf |
- Table 1.3.3.1. Number of independent components of the elastic compliances and stiffnesses for each Laue class (p. 82) | html | pdf |
- Table 1.3.3.2. Elastic compliances of some cubic materials in (GPa)−1 (after Every & McCurdy, 1992) (p. 83) | html | pdf |
- Table 1.3.3.3. Relations between elastic coefficients in isotropic media (p. 85) | html | pdf |
- Table 1.3.4.1. Velocity of propagation when the wavevector is parallel to [100] (cubic crystals) (p. 87) | html | pdf |
- Table 1.3.4.2. Velocity of propagation when the wavevector is parallel to [110] (cubic crystals) (p. 87) | html | pdf |
- Table 1.3.4.3. Velocity of propagation when the wavevector is parallel to [111] (cubic crystals) (p. 87) | html | pdf |
- Table 1.3.4.4. Velocity of propagation when the wavevector is parallel to [001] (hexagonal crystals) (p. 87) | html | pdf |
- Table 1.3.4.5. Velocity of propagation when the wavevector is parallel to [100] (hexagonal crystals) (p. 87) | html | pdf |
- Table 1.3.4.6. Velocity of propagation when the wavevector is parallel to [001] (tetragonal crystals) (p. 87) | html | pdf |
- Table 1.3.4.7. Velocity of propagation when the wavevector is parallel to [100] (tetragonal crystals) (p. 87) | html | pdf |
- Table 1.3.5.1. Temperature dependence of the elastic stiffnesses for some cubic crystals (p. 90) | html | pdf |
- Table 1.3.5.2. Order of magnitude of the temperature dependence of the elastic stiffnesses for different types of crystals (p. 91) | html | pdf |
- Table 1.3.6.1. Number of independent third-order elastic stiffnesses for each Laue class (p. 93) | html | pdf |
- Table 1.3.6.2. Third-order elastic stiffnesses of some materials in (GPa)−1 (after Every & McCurdy, 1992) (p. 94) | html | pdf |
- Table 1.3.7.1. Relationships between , its pressure derivatives and the second- and third-order elastic constants (p. 98) | html | pdf |
- 1.4. Thermal expansion (pp. 100-105) | html | pdf | chapter contents |
- 1.4.1. Definition, symmetry and representation surfaces (pp. 100-101) | html | pdf |
- 1.4.2. Grüneisen relation (pp. 101-102) | html | pdf |
- 1.4.3. Experimental methods (pp. 102-104) | html | pdf |
- 1.4.3.1. General remarks (pp. 102-103) | html | pdf |
- 1.4.3.2. Diffraction (p. 103) | html | pdf |
- 1.4.3.3. Optical methods (interferometry) (pp. 103-104) | html | pdf |
- 1.4.3.4. Electrical methods (p. 104) | html | pdf |
- 1.4.3.4.1. Inductance changes (pushrod dilatometry) (p. 104) | html | pdf |
- 1.4.3.4.2. Capacitance methods (p. 104) | html | pdf |
- 1.4.4. Relation to crystal structure (pp. 104-105) | html | pdf |
- 1.4.5. Glossary (p. 105) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.4.1.1. Shape of the quadric and symmetry restrictions (p. 101) | html | pdf |
- 1.5. Magnetic properties (pp. 106-153) | html | pdf | chapter contents |
- 1.5.1. Introduction (pp. 106-110) | html | pdf |
- 1.5.1.1. Magnetically disordered materials (pp. 107-108) | html | pdf |
- 1.5.1.2. Magnetically ordered materials (pp. 108-110) | html | pdf |
- 1.5.1.2.1. Ferromagnets (including ferrimagnets) (pp. 108-109) | html | pdf |
- 1.5.1.2.2. Antiferromagnets (pp. 109-110) | html | pdf |
- 1.5.1.2.3. Helical and sinusoidal magnetic order (p. 110) | html | pdf |
- 1.5.2. Magnetic symmetry (pp. 110-117) | html | pdf |
- 1.5.2.1. Magnetic point groups (pp. 110-114) | html | pdf |
- 1.5.2.2. Magnetic lattices (pp. 114-117) | html | pdf |
- 1.5.2.3. Magnetic space groups (p. 117) | html | pdf |
- 1.5.2.4. Exchange symmetry (p. 117) | html | pdf |
- 1.5.3. Phase transitions into a magnetically ordered state (pp. 117-126) | html | pdf |
- 1.5.3.1. Magnetic structures in rhombohedral crystals (pp. 118-120) | html | pdf |
- 1.5.3.2. Exchange and magnetic anisotropy energies (pp. 120-121) | html | pdf |
- 1.5.3.3. The thermodynamic theory of transitions into a magnetically ordered state (pp. 121-126) | html | pdf |
- 1.5.3.3.1. Uniaxial ferromagnet (pp. 124-125) | html | pdf |
- 1.5.3.3.2. Uniaxial antiferromagnet (pp. 125-126) | html | pdf |
- 1.5.4. Domain structure (pp. 126-128) | html | pdf |
- 1.5.4.1. 180° domains (pp. 126-128) | html | pdf |
- 1.5.4.2. Twin domains (p. 128) | html | pdf |
- 1.5.4.3. Ferroic domains (p. 128) | html | pdf |
- 1.5.5. Weakly non-collinear magnetic structures (pp. 128-132) | html | pdf |
- 1.5.5.1. Weak ferromagnetism (pp. 128-132) | html | pdf |
- 1.5.5.2. Other weakly non-collinear magnetic structures (p. 132) | html | pdf |
- 1.5.6. Reorientation transitions (pp. 132-133) | html | pdf |
- 1.5.7. Piezomagnetism (pp. 133-139) | html | pdf |
- 1.5.7.1. Piezomagnetic effect (pp. 134-137) | html | pdf |
- 1.5.7.2. Linear magnetostriction (pp. 137-138) | html | pdf |
- 1.5.7.3. Linear magnetic birefringence (pp. 138-139) | html | pdf |
- 1.5.8. Magnetoelectric effect (pp. 139-145) | html | pdf |
- 1.5.8.1. Linear magnetoelectric effect (pp. 140-141) | html | pdf |
- 1.5.8.2. Nonlinear magnetoelectric effects (pp. 142-143) | html | pdf |
- 1.5.8.3. Multiferroics (pp. 143-145) | html | pdf |
- 1.5.9. Magnetostriction (pp. 145-148) | html | pdf |
- 1.5.9.1. Spontaneous magnetostriction (pp. 145-147) | html | pdf |
- 1.5.9.2. Magnetostriction in an external magnetic field (pp. 147-148) | html | pdf |
- 1.5.9.3. The difference between the magnetic anisotropies at zero strain and zero stress (p. 148) | html | pdf |
- 1.5.10. Connection between Gaussian and SI units (p. 148) | html | pdf |
- 1.5.11. Glossary (p. 149) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.5.2.1. Comparison of different symbols for magnetic point groups (p. 110) | html | pdf |
- Table 1.5.2.2. Comparison of different symbols for the elements of magnetic point groups (p. 110) | html | pdf |
- Table 1.5.2.3. The 90 magnetic point groups of types 2 and 3 (pp. 111-112) | html | pdf |
- Table 1.5.2.4. List of the magnetic classes in which ferromagnetism is admitted (p. 113) | html | pdf |
- Table 1.5.3.1. Two types of symbols for collinear antiferromagnetic and ferromagnetic structures (p. 119) | html | pdf |
- Table 1.5.3.2. Sign variation of the components of antiferromagnetic and ferromagnetic vectors during transformations of the group in rhombohedral crystals with four magnetic ions (p. 120) | html | pdf |
- Table 1.5.3.3. Magnetic groups of symmetry in rhombohedral oxides of trivalent transition-metal ions (p. 120) | html | pdf |
- Table 1.5.3.4. Magnetic point groups in rhombohedral oxides of transition metals (p. 120) | html | pdf |
- Table 1.5.3.5. The signs of for four sites of the conventional unit cell (the corners of a primitive cell) (p. 123) | html | pdf |
- Table 1.5.3.6. Characters of the irreducible representations of the group and corresponding magnetic structures (p. 123) | html | pdf |
- Table 1.5.5.1. The numbers of the crystallographic space groups that allow a phase transition into a weakly ferromagnetic state and the invariants of lowest order that are responsible for weak ferromagnetism (p. 130) | html | pdf |
- Table 1.5.5.2. Magnetic point groups that allow weak ferromagnetism (p. 131) | html | pdf |
- Table 1.5.7.1. The forms of the matrix characterizing the piezomagnetic effect (p. 135) | html | pdf |
- Table 1.5.7.2. Experimental data for the piezomagnetic effect (PM) and for linear magnetostriction (LM) (p. 138) | html | pdf |
- Table 1.5.8.1. The forms of the tensor characterizing the linear magnetoelectric effect (p. 139) | html | pdf |
- Table 1.5.8.2. A list of some magnetoelectrics (p. 141) | html | pdf |
- Table 1.5.8.3. Classification of the 122 magnetic point groups according to magnetoelectric types (p. 142) | html | pdf |
- Table 1.5.8.4. List of the magnetic point groups of the ferromagnetoelectrics (p. 143) | html | pdf |
- Table 1.5.8.5. Irreducible representations of the group Gk for TbMnO3 (Kenzelmann et al., 2005) (p. 144) | html | pdf |
- Table 1.5.9.1. Correspondence between matrix indices , A and tensor indices of the tensors describing spontaneous magnetostriction (p. 146) | html | pdf |
- Table 1.5.9.2. Magnetostriction data for ferromagnets with prototype symmetry (p. 147) | html | pdf |
- Table 1.5.10.1. Conversion of non-rationalized (except for α) Gaussian units to SI units (p. 148) | html | pdf |
- 1.6. Classical linear crystal optics (pp. 153-180) | html | pdf | chapter contents |
- 1.6.1. Introduction (p. 153) | html | pdf |
- 1.6.2. Generalized optical, electro-optic and magneto-optic effects (pp. 153-155) | html | pdf |
- 1.6.2.1. Spontaneous polarization (pp. 153-154) | html | pdf |
- 1.6.2.2. Dielectric polarization (p. 154) | html | pdf |
- 1.6.2.3. Optical rotation (gyration) (p. 154) | html | pdf |
- 1.6.2.4. Quadratic electric effect (p. 154) | html | pdf |
- 1.6.2.5. Linear electro-optic effect (p. 154) | html | pdf |
- 1.6.2.6. Sum/difference frequency generation (two-wave mixing) (p. 154) | html | pdf |
- 1.6.2.7. Quadratic electro-optic effect (p. 154) | html | pdf |
- 1.6.2.8. Electric-field induced second harmonic generation (p. 154) | html | pdf |
- 1.6.2.9. Four-wave mixing (pp. 154-155) | html | pdf |
- 1.6.2.10. Faraday rotation (p. 155) | html | pdf |
- 1.6.2.11. Quadratic magneto-optic effect (p. 155) | html | pdf |
- 1.6.2.12. Linear photoelastic effect (p. 155) | html | pdf |
- 1.6.2.13. Linear acousto-optic effect (p. 155) | html | pdf |
- 1.6.3. Linear optics (pp. 155-157) | html | pdf |
- 1.6.3.1. The fundamental equation of crystal optics (pp. 155-156) | html | pdf |
- 1.6.3.2. The optical indicatrix (pp. 156-157) | html | pdf |
- 1.6.3.3. The dielectric impermeability tensor (p. 157) | html | pdf |
- 1.6.4. Practical observation of crystals (pp. 157-169) | html | pdf |
- 1.6.4.1. The polarizing microscope (pp. 157-158) | html | pdf |
- 1.6.4.2. Specimen preparation (p. 158) | html | pdf |
- 1.6.4.3. The indicatrix as an aid to practical microscopy (p. 158) | html | pdf |
- 1.6.4.4. Vibration directions (pp. 158-159) | html | pdf |
- 1.6.4.5. Measuring refractive indices (pp. 159-160) | html | pdf |
- 1.6.4.6. Determination of linear birefringence (pp. 160-161) | html | pdf |
- 1.6.4.7. Identification of polarization colours (p. 161) | html | pdf |
- 1.6.4.8. Fringe counting (pp. 161-162) | html | pdf |
- 1.6.4.9. Fast and slow vibration directions (pp. 162-163) | html | pdf |
- 1.6.4.10. Other methods of measuring birefringence (p. 163) | html | pdf |
- 1.6.4.11. Interference figures (pp. 163-164) | html | pdf |
- 1.6.4.12. Uniaxial figures (pp. 164-165) | html | pdf |
- 1.6.4.13. Biaxial figures (pp. 165-168) | html | pdf |
- 1.6.4.14. Orientation studies (pp. 168-169) | html | pdf |
- 1.6.4.15. Absorption colours (p. 169) | html | pdf |
- 1.6.4.16. Dispersion (p. 169) | html | pdf |
- 1.6.5. Optical rotation (pp. 169-175) | html | pdf |
- 1.6.5.1. Introduction (pp. 169-170) | html | pdf |
- 1.6.5.2. The dielectric tensor and spatial dispersion (pp. 170-171) | html | pdf |
- 1.6.5.3. Symmetry of effective dielectric tensor (p. 171) | html | pdf |
- 1.6.5.4. Gyration tensor (p. 171) | html | pdf |
- 1.6.5.5. Optical rotation along the optic axis of a uniaxial crystal (pp. 171-173) | html | pdf |
- 1.6.5.6. Optical rotation perpendicular to the optic axis of a uniaxial crystal (pp. 173-175) | html | pdf |
- 1.6.6. Linear electro-optic effect (pp. 175-176) | html | pdf |
- 1.6.6.1. Primary and secondary effects (p. 175) | html | pdf |
- 1.6.6.2. Example of LiNbO3 (pp. 175-176) | html | pdf |
- 1.6.7. The linear photoelastic effect (pp. 176-179) | html | pdf |
- 1.6.7.1. Introduction (pp. 176-177) | html | pdf |
- 1.6.7.2. Spontaneous strain in BaTiO3 (pp. 177-178) | html | pdf |
- 1.6.7.3. The acousto-optic effect (pp. 178-179) | html | pdf |
- 1.6.8. Glossary (p. 179) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.6.2.1. Summary of linear and nonlinear optical properties (p. 153) | html | pdf |
- Table 1.6.3.1. Symmetry constraints on the optical indicatrix (p. 157) | html | pdf |
- Table 1.6.5.1. Symmetry constraints (see Section 1.1.4.10
) on the gyration tensor (p. 172) | html | pdf |
- Table 1.6.6.1. Symmetry constraints (see Section 1.1.4.10
) on the linear electro-optic tensor (contracted notation) (p. 174) | html | pdf |
- Table 1.6.7.1. Symmetry constraints on the linear elasto-optic (strain-optic) tensor (contracted notation) (see Section 1.1.4.10.6
) (p. 178) | html | pdf |
- 1.7. Nonlinear optical properties (pp. 181-222) | html | pdf | chapter contents |
- 1.7.1. Introduction (p. 181) | html | pdf |
- 1.7.2. Origin and symmetry of optical nonlinearities (pp. 181-186) | html | pdf |
- 1.7.2.1. Induced polarization and susceptibility (pp. 181-184) | html | pdf |
- 1.7.2.1.1. Linear and nonlinear responses (p. 182) | html | pdf |
- 1.7.2.1.1.1. Linear response (p. 182) | html | pdf |
- 1.7.2.1.1.2. Quadratic response (p. 182) | html | pdf |
- 1.7.2.1.1.3. Higher-order response (p. 182) | html | pdf |
- 1.7.2.1.2. Linear and nonlinear susceptibilities (pp. 182-183) | html | pdf |
- 1.7.2.1.2.1. Linear susceptibility (p. 183) | html | pdf |
- 1.7.2.1.2.2. Second-order susceptibility (p. 183) | html | pdf |
- 1.7.2.1.2.3. nth-order susceptibility (p. 183) | html | pdf |
- 1.7.2.1.3. Superposition of monochromatic waves (p. 183) | html | pdf |
- 1.7.2.1.4. Conventions for nonlinear susceptibilities (pp. 183-184) | html | pdf |
- 1.7.2.1.4.1. Classical convention (pp. 183-184) | html | pdf |
- 1.7.2.1.4.2. Convention used in this chapter (p. 184) | html | pdf |
- 1.7.2.2. Symmetry properties (pp. 184-186) | html | pdf |
- 1.7.2.2.1. Intrinsic permutation symmetry (pp. 184-185) | html | pdf |
- 1.7.2.2.1.1. ABDP and Kleinman symmetries (pp. 184-185) | html | pdf |
- 1.7.2.2.1.2. Manley–Rowe relations (p. 185) | html | pdf |
- 1.7.2.2.1.3. Contracted notation for susceptibility tensors (p. 185) | html | pdf |
- 1.7.2.2.2. Implications of spatial symmetry on the susceptibility tensors (pp. 185-186) | html | pdf |
- 1.7.3. Propagation phenomena (pp. 186-215) | html | pdf |
- 1.7.3.1. Crystalline linear optical properties (pp. 186-190) | html | pdf |
- 1.7.3.1.1. Index surface and electric field vectors (pp. 186-188) | html | pdf |
- 1.7.3.1.2. Isotropic class (p. 188) | html | pdf |
- 1.7.3.1.3. Uniaxial class (pp. 188-189) | html | pdf |
- 1.7.3.1.4. Biaxial class (pp. 189-190) | html | pdf |
- 1.7.3.1.4.1. Propagation in the principal planes (pp. 189-190) | html | pdf |
- 1.7.3.1.4.2. Propagation out of the principal planes (p. 190) | html | pdf |
- 1.7.3.2. Equations of propagation of three-wave and four-wave interactions (pp. 190-199) | html | pdf |
- 1.7.3.2.1. Coupled electric fields amplitudes equations (pp. 190-191) | html | pdf |
- 1.7.3.2.2. Phase matching (pp. 191-195) | html | pdf |
- 1.7.3.2.2.1. Cubic crystals (p. 192) | html | pdf |
- 1.7.3.2.2.2. Uniaxial crystals (p. 192) | html | pdf |
- 1.7.3.2.2.3. Biaxial crystals (pp. 192-195) | html | pdf |
- 1.7.3.2.3. Quasi phase matching (pp. 195-196) | html | pdf |
- 1.7.3.2.4. Effective coefficient and field tensor (pp. 196-199) | html | pdf |
- 1.7.3.2.4.1. Definitions and symmetry properties (pp. 196-197) | html | pdf |
- 1.7.3.2.4.2. Uniaxial class (pp. 197-199) | html | pdf |
- 1.7.3.2.4.3. Biaxial class (p. 199) | html | pdf |
- 1.7.3.3. Integration of the propagation equations (pp. 199-215) | html | pdf |
- 1.7.3.3.1. Spatial and temporal profiles (pp. 199-200) | html | pdf |
- 1.7.3.3.2. Second harmonic generation (SHG) (pp. 200-209) | html | pdf |
- 1.7.3.3.2.1. Non-resonant SHG with undepleted pump in the parallel-beam limit with a Gaussian transverse profile (pp. 200-205) | html | pdf |
- 1.7.3.3.2.2. Non-resonant SHG with undepleted pump and transverse and longitudinal Gaussian beams (pp. 205-206) | html | pdf |
- 1.7.3.3.2.3. Non-resonant SHG with depleted pump in the parallel-beam limit (pp. 206-208) | html | pdf |
- 1.7.3.3.2.4. Resonant SHG (pp. 208-209) | html | pdf |
- 1.7.3.3.3. Third harmonic generation (THG) (pp. 209-210) | html | pdf |
- 1.7.3.3.3.1. SHG () and SFG () in different crystals (pp. 209-210) | html | pdf |
- 1.7.3.3.3.2. SHG () and SFG () in the same crystal (p. 210) | html | pdf |
- 1.7.3.3.3.3. Direct THG () (p. 210) | html | pdf |
- 1.7.3.3.4. Sum-frequency generation (SFG) (pp. 210-211) | html | pdf |
- 1.7.3.3.4.1. SFG () with undepletion at and (p. 211) | html | pdf |
- 1.7.3.3.4.2. SFG () with undepletion at (p. 211) | html | pdf |
- 1.7.3.3.5. Difference-frequency generation (DFG) (pp. 211-215) | html | pdf |
- 1.7.3.3.5.1. DFG () with undepletion at and (p. 211) | html | pdf |
- 1.7.3.3.5.2. DFG () with undepletion at (p. 211) | html | pdf |
- 1.7.3.3.5.3. DFG () with undepletion at – optical parametric amplification (OPA), optical parametric oscillation (OPO) (pp. 211-215) | html | pdf |
- 1.7.4. Determination of basic nonlinear parameters (pp. 215-217) | html | pdf |
- 1.7.4.1. Phase-matching directions and associated acceptance bandwidths (p. 215) | html | pdf |
- 1.7.4.2. Nonlinear coefficients (pp. 215-217) | html | pdf |
- 1.7.4.2.1. Non-phase-matched interaction method (pp. 215-217) | html | pdf |
- 1.7.4.2.2. Phase-matched interaction method (p. 217) | html | pdf |
- 1.7.5. The main nonlinear crystals (pp. 217-219) | html | pdf |
- 1.7.6. Glossary (p. 219) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.7.2.1. The most common nonlinear effects and the corresponding susceptibility tensors in the frequency domain (p. 184) | html | pdf |
- Table 1.7.2.2. Nonzero χ(2) coefficients and equalities between them in the general case (p. 185) | html | pdf |
- Table 1.7.2.3. Nonzero χ(2) coefficients and equalities between them under the Kleinman symmetry assumption (p. 186) | html | pdf |
- Table 1.7.2.4. Nonzero χ(3) coefficients and equalities between them in the general case (p. 187) | html | pdf |
- Table 1.7.2.5. Nonzero χ(3) coefficients and equalities between them under the Kleinman symmetry assumption (p. 188) | html | pdf |
- Table 1.7.3.1. Correspondence between the phase-matching relations, the configurations of polarization and the types according to the sum- and difference-frequency generation processes SFG (), DFG () and DFG () (p. 191) | html | pdf |
- Table 1.7.3.2. Correspondence between the phase-matching relations, the configurations of polarization and the types according to SFG (), DFG (), DFG () and DFG () (Boulanger et al., 1993) (p. 192) | html | pdf |
- Table 1.7.3.3. Classes of refractive-index inequalities for collinear phase matching of three-wave interactions in positive and negative uniaxial crystals (p. 193) | html | pdf |
- Table 1.7.3.4. Classes of refractive-index inequalities for collinear phase matching of four-wave interactions in positive () and negative () uniaxial crystals with (p. 193) | html | pdf |
- Table 1.7.3.5. Refractive-index conditions that determine collinear phase-matching loci in the principal planes of positive and negative biaxial crystals for three-wave SFG (p. 194) | html | pdf |
- Table 1.7.3.6. Refractive-index conditions that determine collinear phase-matching loci in the principal planes of positive and negative biaxial crystals for four-wave SFG (pp. 195-196) | html | pdf |
- Table 1.7.3.7. Matrix representations of the (oee) and (eoo) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz, with (Boulanger & Marnier, 1991) (p. 198) | html | pdf |
- Table 1.7.3.8. Matrix representations of the (oeee), (eooo) and (ooee) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz, with (Boulanger et al., 1993) (p. 198) | html | pdf |
- Table 1.7.3.9. Field-tensor components specifically nil in the principal planes of uniaxial and biaxial crystals for three-wave and four-wave interactions (p. 199) | html | pdf |
- Table 1.7.5.1. Mineral nonlinear crystals (pp. 216-217) | html | pdf |
- Table 1.7.5.2. Organic and organo-mineral crystals (pp. 218-219) | html | pdf |
- 1.8. Transport properties (pp. 223-230) | html | pdf | chapter contents |
- 1.8.1. Introduction (p. 223) | html | pdf |
- 1.8.2. Macroscopic equations (p. 223) | html | pdf |
- 1.8.3. Electrical resistivity (pp. 223-227) | html | pdf |
- 1.8.3.1. Properties of the electrical resistivity (pp. 223-225) | html | pdf |
- 1.8.3.2. Metal alloys (p. 225) | html | pdf |
- 1.8.3.3. Semiconductors (pp. 225-226) | html | pdf |
- 1.8.3.4. The Hall effect (pp. 226-227) | html | pdf |
- 1.8.3.5. Insulators (p. 227) | html | pdf |
- 1.8.3.6. Ionic conductors (p. 227) | html | pdf |
- 1.8.4. Thermal conductivity (pp. 227-229) | html | pdf |
- 1.8.4.1. Introduction (p. 227) | html | pdf |
- 1.8.4.2. Boundary scattering (p. 227) | html | pdf |
- 1.8.4.3. Impurity scattering (p. 227) | html | pdf |
- 1.8.4.4. Isotope scattering (p. 228) | html | pdf |
- 1.8.4.5. Alloy scattering (p. 228) | html | pdf |
- 1.8.4.6. Anharmonic interactions (p. 228) | html | pdf |
- 1.8.4.7. Thermal conductivity of metals (pp. 228-229) | html | pdf |
- 1.8.5. Seebeck coefficient (pp. 229-230) | html | pdf |
- 1.8.6. Glossary (p. 230) | html | pdf |
- References
| html | pdf |
- Figures
- 1.9. Atomic displacement parameters (pp. 231-245) | html | pdf | chapter contents |
- 1.9.1. Introduction (p. 231) | html | pdf |
- 1.9.2. The atomic displacement parameters (ADPs) (pp. 231-235) | html | pdf |
- 1.9.2.1. Tensorial properties of (quasi)moments and cumulants (p. 232) | html | pdf |
- 1.9.2.2. Contraction, expansion and invariants of atomic displacement tensors (pp. 232-235) | html | pdf |
- 1.9.3. Site-symmetry restrictions (p. 235) | html | pdf |
- 1.9.3.1. Calculation procedures (p. 235) | html | pdf |
- 1.9.3.2. Key to tables (p. 235) | html | pdf |
- 1.9.4. Graphical representation (pp. 235-245) | html | pdf |
- 1.9.4.1. Representation surfaces of second-order ADTs (pp. 235-242) | html | pdf |
- 1.9.4.2. Higher-order representations (pp. 242-245) | html | pdf |
- 1.9.5. Glossary (p. 245) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.9.3.1. Site-symmetry table giving key to Tables 1.9.3.2 to 1.9.3.6 for restrictions on the symmetry of various thermal-motion tensors (pp. 233-234) | html | pdf |
- Table 1.9.3.2. Symmetry restrictions on coefficients in second-order tensors (p. 235) | html | pdf |
- Table 1.9.3.3. Symmetry restrictions on coefficients in third-rank symmetric polar tensors (p. 236) | html | pdf |
- Table 1.9.3.4. Symmetry restrictions on coefficients in fourth-rank symmetric polar tensors (pp. 237-238) | html | pdf |
- Table 1.9.3.5. Symmetry restrictions on coefficients in fifth-rank symmetric polar tensors (pp. 238-240) | html | pdf |
- Table 1.9.3.6. Symmetry restrictions on coefficients in sixth-rank symmetric polar tensors (pp. 241-242) | html | pdf |
- 1.10. Tensors in quasiperiodic structures (pp. 246-270) | html | pdf | chapter contents |
- 1.10.1. Quasiperiodic structures (pp. 246-248) | html | pdf |
- 1.10.1.1. Introduction (p. 246) | html | pdf |
- 1.10.1.2. Types of quasiperiodic crystals (pp. 246-247) | html | pdf |
- 1.10.1.3. Embedding in superspace (pp. 247-248) | html | pdf |
- 1.10.2. Symmetry (pp. 248-252) | html | pdf |
- 1.10.2.1. Symmetry transformations (pp. 248-249) | html | pdf |
- 1.10.2.2. Point groups (pp. 249-250) | html | pdf |
- 1.10.2.3. Superspace groups (p. 250) | html | pdf |
- 1.10.2.4. Magnetic superspace groups (pp. 250-251) | html | pdf |
- 1.10.2.5. Pseudotensors (pp. 251-252) | html | pdf |
- 1.10.3. Action of the symmetry group (pp. 252-253) | html | pdf |
- 1.10.3.1. Action of superspace groups (p. 252) | html | pdf |
- 1.10.3.2. Compensating gauge transformations (p. 252) | html | pdf |
- 1.10.3.3. Irreducible representations of three-dimensional space groups (pp. 252-253) | html | pdf |
- 1.10.4. Tensors (pp. 253-262) | html | pdf |
- 1.10.4.1. Tensors in higher-dimensional spaces (p. 253) | html | pdf |
- 1.10.4.2. Tensors in superspace (p. 254) | html | pdf |
- 1.10.4.3. Inhomogeneous tensors (pp. 254-255) | html | pdf |
- 1.10.4.4. Irreducible representations (p. 255) | html | pdf |
- 1.10.4.5. Determining the number of independent tensor elements (pp. 255-257) | html | pdf |
- 1.10.4.5.1. Piezoelectric tensor (pp. 255-256) | html | pdf |
- 1.10.4.5.2. Elasticity tensor (p. 256) | html | pdf |
- 1.10.4.5.3. Electric field gradient tensor (pp. 256-257) | html | pdf |
- 1.10.4.6. Determining the independent tensor elements (pp. 257-262) | html | pdf |
- 1.10.4.6.1. Metric tensor for an octagonal three-dimensional quasicrystal (p. 257) | html | pdf |
- 1.10.4.6.2. EFG tensor for Pcmn (p. 257) | html | pdf |
- 1.10.4.6.3. Elasticity tensor for a two-dimensional octagonal quasicrystal (pp. 257-258) | html | pdf |
- 1.10.4.6.4. Piezoelectric tensor for a three-dimensional octagonal quasicrystal (pp. 258-259) | html | pdf |
- 1.10.4.6.5. Elasticity tensor for an icosahedral quasicrystal (p. 259) | html | pdf |
- 1.10.4.6.6. Coupling to magnetism (pp. 259-262) | html | pdf |
- 1.10.5. Tables (pp. 262-268) | html | pdf |
- References
| html | pdf |
- Tables
- Table 1.10.2.1. Allowable three-dimensional point groups for systems up to rank six (p. 251) | html | pdf |
- Table 1.10.4.1. Characters of the point group for representations relevant for elasticity (p. 256) | html | pdf |
- Table 1.10.4.2. Sign change of under the generators A, B, C (p. 257) | html | pdf |
- Table 1.10.4.3. Elastic constants for icosahedral quasicrystals (p. 260) | html | pdf |
- Table 1.10.5.1. Character tables of some point groups for quasicrystals (pp. 260-261) | html | pdf |
- Table 1.10.5.2. Matrices of the irreducible representations of dimension corresponding to the irreps of Table 1.10.5.1 (pp. 262-267) | html | pdf |
- Table 1.10.5.3. The representation matrices for (p. 268) | html | pdf |
- Table 1.10.5.4. Number of free parameters for some tensors and their symmetry groups (p. 268) | html | pdf |
- 1.11. Tensorial properties of local crystal susceptibilities (pp. 269-283) | html | pdf | chapter contents |
- 1.11.1. Introduction (pp. 269-270) | html | pdf |
- 1.11.2. Symmetry restrictions on local tensorial susceptibility and forbidden reflections (pp. 270-272) | html | pdf |
- 1.11.2.1. General symmetry restrictions (p. 270) | html | pdf |
- 1.11.2.2. Tensorial structure factors and forbidden reflections (pp. 270-271) | html | pdf |
- 1.11.2.2.1. Glide-plane forbidden reflections (pp. 270-271) | html | pdf |
- 1.11.2.2.2. Screw-axis forbidden reflections (p. 271) | html | pdf |
- 1.11.2.3. Local tensorial susceptibility of cubic crystals (pp. 271-272) | html | pdf |
- 1.11.3. Polarization properties and azimuthal dependence (pp. 272-274) | html | pdf |
- 1.11.4. Physical mechanisms for the anisotropy of atomic X-ray susceptibility (p. 274) | html | pdf |
- 1.11.5. Non-resonant magnetic scattering (p. 275) | html | pdf |
- 1.11.6. Resonant atomic factors: multipole expansion (pp. 275-280) | html | pdf |
- 1.11.6.1. Tensor atomic factors: internal symmetry (pp. 275-276) | html | pdf |
- 1.11.6.2. Tensor atomic factors (non-magnetic case) (pp. 276-277) | html | pdf |
- 1.11.6.3. Hidden internal symmetry of the dipole–quadrupole tensors in resonant atomic factors (pp. 277-278) | html | pdf |
- 1.11.6.4. Tensor structure factors (p. 278) | html | pdf |
- 1.11.6.5. Tensor atomic factors (magnetic case) (pp. 278-279) | html | pdf |
- 1.11.6.6. Tensor atomic factors (spherical tensor representation) (pp. 279-280) | html | pdf |
- 1.11.7. Glossary (p. 281) | html | pdf |
- References
| html | pdf |
- Tables
- Table 1.11.2.1. The indices of the screw-axis/glide-plane forbidden reflections () and independent components of their tensorial structure factors (p. 271) | html | pdf |
- Table 1.11.2.2. The indices of the forbidden reflections and corresponding tensors of structure factors for the cubic space groups () (p. 272) | html | pdf |
- Table 1.11.6.1. Coefficients corresponding to various kinds of tensor symmetry with respect to space inversion , rotations , and time reversal (p. 275) | html | pdf |
- Table 1.11.6.2. Identification of properties under time inversion and space inversion of tensors associated with multipole expansion (p. 280) | html | pdf |
- Symmetry aspects of excitations
- 2.1. Phonons (pp. 286-313) | html | pdf | chapter contents |
- 2.1.1. Introduction (p. 286) | html | pdf |
- 2.1.2. Fundamentals of lattice dynamics in the harmonic approximation (pp. 286-294) | html | pdf |
- 2.1.2.1. Hamiltonian and equations of motion (pp. 286-287) | html | pdf |
- 2.1.2.2. Stability conditions (p. 287) | html | pdf |
- 2.1.2.3. The dynamical matrix (pp. 287-288) | html | pdf |
- 2.1.2.4. Eigenvalues and phonon dispersion, acoustic modes (pp. 288-290) | html | pdf |
- 2.1.2.5. Eigenvectors and normal coordinates (p. 290) | html | pdf |
- 2.1.2.6. Amplitudes of lattice vibrations (pp. 290-291) | html | pdf |
- 2.1.2.7. Density of states and the lattice heat capacity (pp. 291-292) | html | pdf |
- 2.1.2.8. Thermal expansion, compressibility and Grüneisen parameters (pp. 292-294) | html | pdf |
- 2.1.3. Symmetry of lattice vibrations (pp. 294-311) | html | pdf |
- 2.1.3.1. Symmetry constraints for the dynamical matrix (pp. 294-301) | html | pdf |
- 2.1.3.1.1. Example (pp. 297-301) | html | pdf |
- 2.1.3.2. Symmetry of dispersion planes (p. 301) | html | pdf |
- 2.1.3.3. Symmetry properties of eigenvectors (pp. 301-303) | html | pdf |
- 2.1.3.3.1. Example (p. 303) | html | pdf |
- 2.1.3.4. Symmetry coordinates (pp. 303-306) | html | pdf |
- 2.1.3.4.1. Example (pp. 304-306) | html | pdf |
- 2.1.3.5. Degeneracy of lattice vibrations (pp. 306-309) | html | pdf |
- 2.1.3.5.1. Accidental degeneracy (p. 306) | html | pdf |
- 2.1.3.5.2. Time-reversal degeneracy (pp. 306-308) | html | pdf |
- 2.1.3.5.3. Example (pp. 308-309) | html | pdf |
- 2.1.3.6. Compatibility relations (pp. 309-310) | html | pdf |
- 2.1.3.6.1. Example (pp. 309-310) | html | pdf |
- 2.1.3.7. Optical selection rules (pp. 310-311) | html | pdf |
- 2.1.3.7.1. Example (p. 311) | html | pdf |
- 2.1.4. Conclusion (p. 311) | html | pdf |
- 2.1.5. Glossary (pp. 311-312) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.1.3.1. Example structure in space group (p. 298) | html | pdf |
- Table 2.1.3.2. Atom transformation table (p. 298) | html | pdf |
- Table 2.1.3.3. Character table of the point group (p. 303) | html | pdf |
- Table 2.1.3.4. Irreducible representations of the point group (p. 308) | html | pdf |
- Table 2.1.3.5. Irreducible representations of the space group for (the point) (p. 309) | html | pdf |
- Table 2.1.3.6. Irreducible representations of the space group for (the A point) (p. 309) | html | pdf |
- Table 2.1.3.7. Irreducible representations of the space group for (the point) (p. 310) | html | pdf |
- Table 2.1.3.8. Character table of the space group for (the point) (p. 311) | html | pdf |
- 2.2. Electrons (pp. 314-333) | html | pdf | chapter contents |
- 2.2.1. Introduction (p. 314) | html | pdf |
- 2.2.2. The lattice (p. 314) | html | pdf |
- 2.2.2.1. The direct lattice and the Wigner–Seitz cell (p. 314) | html | pdf |
- 2.2.2.2. The reciprocal lattice and the Brillouin zone (p. 314) | html | pdf |
- 2.2.3. Symmetry operators (pp. 314-315) | html | pdf |
- 2.2.3.1. Transformation of functions (pp. 314-315) | html | pdf |
- 2.2.3.2. Transformation of operators (p. 315) | html | pdf |
- 2.2.3.3. The Seitz operators (p. 315) | html | pdf |
- 2.2.3.4. The important groups and their first classification (p. 315) | html | pdf |
- 2.2.4. The Bloch theorem (pp. 315-316) | html | pdf |
- 2.2.4.1. A simple quantum-mechanical derivation (pp. 315-316) | html | pdf |
- 2.2.4.2. Periodic boundary conditions (p. 316) | html | pdf |
- 2.2.4.3. A simple group-theoretical approach (p. 316) | html | pdf |
- 2.2.5. The free-electron (Sommerfeld) model (p. 317) | html | pdf |
- 2.2.6. Space-group symmetry (pp. 317-318) | html | pdf |
- 2.2.6.1. Representations and bases of the space group (pp. 317-318) | html | pdf |
- 2.2.6.2. Energy bands (p. 318) | html | pdf |
- 2.2.7. The vector and the Brillouin zone (p. 318) | html | pdf |
- 2.2.7.1. Various aspects of the vector (p. 318) | html | pdf |
- 2.2.7.2. The Brillouin zone (BZ) (p. 318) | html | pdf |
- 2.2.7.3. The symmetry of the Brillouin zone (p. 318) | html | pdf |
- 2.2.8. Bloch functions (p. 319) | html | pdf |
- 2.2.9. Quantum-mechanical treatment (pp. 319-320) | html | pdf |
- 2.2.9.1. Exchange and correlation treatment (p. 319) | html | pdf |
- 2.2.9.2. The choice of basis sets and wavefunctions (p. 319) | html | pdf |
- 2.2.9.3. The form of the potential (p. 319) | html | pdf |
- 2.2.9.4. Relativistic effects (p. 320) | html | pdf |
- 2.2.10. Density functional theory (pp. 320-321) | html | pdf |
- 2.2.11. Band-theory methods (pp. 321-323) | html | pdf |
- 2.2.11.1. LCAO (linear combination of atomic orbitals) (p. 321) | html | pdf |
- 2.2.11.2. TB (tight binding) (pp. 321-322) | html | pdf |
- 2.2.11.3. The pseudo-potential schemes (p. 322) | html | pdf |
- 2.2.11.4. APW (augmented plane wave) and LAPW methods (p. 322) | html | pdf |
- 2.2.11.5. KKR (Korringa–Kohn–Rostocker) method (p. 322) | html | pdf |
- 2.2.11.6. LMTO (linear combination of muffin-tin orbitals) method (p. 322) | html | pdf |
- 2.2.11.7. CP (Car–Parrinello) method (p. 322) | html | pdf |
- 2.2.11.8. Order N schemes (pp. 322-323) | html | pdf |
- 2.2.12. The linearized augmented plane wave method (pp. 323-324) | html | pdf |
- 2.2.13. The local coordinate system (pp. 324-325) | html | pdf |
- 2.2.13.1. Crystal harmonics (pp. 324-325) | html | pdf |
- 2.2.13.2. Interpretation for bonding (p. 325) | html | pdf |
- 2.2.14. Characterization of Bloch states (pp. 325-327) | html | pdf |
- 2.2.14.1. Characterization by group theory (p. 325) | html | pdf |
- 2.2.14.2. Energy regions (p. 325) | html | pdf |
- 2.2.14.3. Decomposition according to wavefunctions (pp. 325-326) | html | pdf |
- 2.2.14.4. Localized versus itinerant electrons (p. 326) | html | pdf |
- 2.2.14.5. Spin polarization (p. 326) | html | pdf |
- 2.2.14.6. The density of states (DOS) (pp. 326-327) | html | pdf |
- 2.2.15. Electric field gradient tensor (pp. 327-330) | html | pdf |
- 2.2.15.1. Introduction (p. 327) | html | pdf |
- 2.2.15.2. EFG conversion formulas (pp. 327-328) | html | pdf |
- 2.2.15.3. Theoretical approach (pp. 328-330) | html | pdf |
- 2.2.16. Examples (pp. 330-332) | html | pdf |
- 2.2.16.1. F.c.c. copper (pp. 330-331) | html | pdf |
- 2.2.16.2. The rutile TiO2 (p. 331) | html | pdf |
- 2.2.16.3. Core electron spectra (p. 332) | html | pdf |
- 2.2.17. Conclusion (p. 332) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.2.13.1. Picking rules for the local coordinate axes and the corresponding combinations () of non-cubic groups taken from Kurki-Suonio (1977) (p. 324) | html | pdf |
- Table 2.2.13.2. LM combinations of cubic groups as linear cominations of 's (given in parentheses) (p. 324) | html | pdf |
- Table 2.2.15.1. Partial O 2p charges (in electrons) and electric field gradient tensor O EFG (in 1021 V m−2) for YBa2Cu3O7 (p. 329) | html | pdf |
- Table 2.2.16.1. factors for X-ray emission spectra showing the selection rule (p. 332) | html | pdf |
- 2.3. Raman scattering (pp. 334-348) | html | pdf | chapter contents |
- 2.3.1. Introduction (p. 334) | html | pdf |
- 2.3.2. Inelastic light scattering in crystals – basic notions (pp. 334-335) | html | pdf |
- 2.3.2.1. Kinematics (p. 334) | html | pdf |
- 2.3.2.2. Cross section (pp. 334-335) | html | pdf |
- 2.3.2.3. Experimental aspects (p. 335) | html | pdf |
- 2.3.3. First-order scattering by phonons (pp. 335-342) | html | pdf |
- 2.3.3.1. First-order scattering cross section and Raman spectral line shapes (p. 336) | html | pdf |
- 2.3.3.2. Symmetry properties of the scattering cross section (pp. 336-337) | html | pdf |
- 2.3.3.3. Raman tensor and selection rules at (pp. 337-339) | html | pdf |
- 2.3.3.4. Centrosymmetric crystals (pp. 339-341) | html | pdf |
- 2.3.3.5. Noncentrosymmetric crystals (pp. 341-342) | html | pdf |
- 2.3.3.6. -dependent terms (p. 342) | html | pdf |
- 2.3.4. Morphic effects in Raman scattering (pp. 342-345) | html | pdf |
- 2.3.4.1. General remarks (pp. 342-343) | html | pdf |
- 2.3.4.2. Electric-field-induced scattering (pp. 343-344) | html | pdf |
- 2.3.4.3. Raman scattering in a magnetic field (pp. 344-345) | html | pdf |
- 2.3.4.4. Stress- (strain-) induced Raman scattering (p. 345) | html | pdf |
- 2.3.5. Spatial-dispersion effects (pp. 345-346) | html | pdf |
- 2.3.6. Higher-order scattering (pp. 346-347) | html | pdf |
- 2.3.7. Conclusions (pp. 347-348) | html | pdf |
- 2.3.8. Glossary (p. 348) | html | pdf |
- References
| html | pdf |
- Tables
- Table 2.3.3.1. Symmetry of Raman tensors in the 32 crystal classes (pp. 338-340) | html | pdf |
- Table 2.3.3.2. Raman selection rules in crystals of the class (p. 341) | html | pdf |
- Table 2.3.3.3. Raman selection rules in crystals of the 4mm class (p. 342) | html | pdf |
- Table 2.3.4.1. Symmetrized (s) and antisymmetrized (a) sets of trilinear basis functions corresponding to symmetry species of the 4mm class (p. 343) | html | pdf |
- Table 2.3.6.1. Thermal factors for second-order Raman scattering (p. 347) | html | pdf |
- 2.4. Brillouin scattering (pp. 349-355) | html | pdf | chapter contents |
- 2.4.1. Introduction (p. 349) | html | pdf |
- 2.4.2. Elastic waves (pp. 349-350) | html | pdf |
- 2.4.2.1. Non-piezoelectric media (p. 349) | html | pdf |
- 2.4.2.2. Piezoelectric media (pp. 349-350) | html | pdf |
- 2.4.3. Coupling of light with elastic waves (p. 350) | html | pdf |
- 2.4.3.1. Direct coupling to displacements (p. 350) | html | pdf |
- 2.4.3.2. Coupling via the electro-optic effect (p. 350) | html | pdf |
- 2.4.4. Brillouin scattering in crystals (pp. 350-351) | html | pdf |
- 2.4.4.1. Kinematics (p. 350) | html | pdf |
- 2.4.4.2. Scattering cross section (pp. 350-351) | html | pdf |
- 2.4.5. Use of the tables (p. 351) | html | pdf |
- 2.4.6. Techniques of Brillouin spectroscopy (pp. 351-355) | html | pdf |
- References
| html | pdf |
- Tables
- Table 2.4.5.1. Definition of Laue classes (p. 351) | html | pdf |
- Table 2.4.5.2. Cubic Laue classes and : longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.3. Tetragonal and hexagonal Laue classes: longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.4. Hexagonal Laue class : longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.5. Tetragonal Laue class : longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.6. Orthorhombic Laue class O: longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.7. Trigonal Laue class : longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.8. Trigonal Laue class : longitudinal modes (p. 352) | html | pdf |
- Table 2.4.5.9. Cubic Laue classes and : transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.10. Tetragonal and hexagonal Laue classes: transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.11. Hexagonal Laue class : transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.12. Tetragonal Laue class : transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.13. Orthorhombic Laue class O: transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.14. Trigonal Laue class : transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.15. Trigonal Laue class : transverse modes, backscattering (p. 353) | html | pdf |
- Table 2.4.5.16. Cubic Laue classes and : transverse modes, right-angle scattering (p. 354) | html | pdf |
- Table 2.4.5.17. Tetragonal and hexagonal Laue classes: transverse modes, right-angle scattering (p. 354) | html | pdf |
- Table 2.4.5.18. Hexagonal Laue class: transverse modes, right-angle scattering (p. 354) | html | pdf |
- Table 2.4.5.19. Tetragonal Laue class: transverse modes, right-angle scattering (p. 354) | html | pdf |
- Table 2.4.5.20. Orthorhombic Laue class O: transverse modes, right-angle scattering (p. 354) | html | pdf |
- Table 2.4.5.21. Trigonal Laue class : transverse modes, right-angle scattering (p. 355) | html | pdf |
- Table 2.4.5.22. Trigonal Laue class : transverse modes, right-angle scattering (p. 355) | html | pdf |
- Table 2.4.5.23. Particular directions of incident light used in Tables 2.4.5.17 to 2.4.5.22 (p. 355) | html | pdf |
- Symmetry aspects of phase transitions, twinning and domain structures
- 3.1. Structural phase transitions (pp. 358-396) | html | pdf | chapter contents |
- 3.1.1. Introduction (pp. 358-360) | html | pdf |
- 3.1.2. Thermodynamics of structural transitions (pp. 360-369) | html | pdf |
- 3.1.2.1. Introduction (p. 360) | html | pdf |
- 3.1.2.2. Basic ideas of Landau's theory of phase transitions (pp. 360-364) | html | pdf |
- 3.1.2.2.1. Description of a prototype example (p. 360) | html | pdf |
- 3.1.2.2.2. Basic assumptions and strategy (p. 361) | html | pdf |
- 3.1.2.2.3. Symmetry constraints and form of the free energy (p. 361) | html | pdf |
- 3.1.2.2.4. Reduction of the number of relevant degrees of freedom: order parameter (pp. 361-362) | html | pdf |
- 3.1.2.2.5. Stable state below Tc and physical anomalies induced by the transition (pp. 362-363) | html | pdf |
- 3.1.2.2.6. Symmetry considerations (pp. 363-364) | html | pdf |
- 3.1.2.2.6.1. Order-parameter symmetry (p. 363) | html | pdf |
- 3.1.2.2.6.2. Degeneracy of the low-symmetry phase (pp. 363-364) | html | pdf |
- 3.1.2.3. Free-energy models for discontinuous transitions (pp. 364-365) | html | pdf |
- 3.1.2.4. Generalization of the approach (pp. 365-367) | html | pdf |
- 3.1.2.4.1. Description of the phase transition (p. 366) | html | pdf |
- 3.1.2.4.2. Order parameter (pp. 366-367) | html | pdf |
- 3.1.2.4.3. Stable states and symmetry in the vicinity of (p. 367) | html | pdf |
- 3.1.2.5. Application to the structural transformation in a real system (pp. 367-369) | html | pdf |
- 3.1.2.5.1. Nature of the groups and of their irreducible representations (p. 367) | html | pdf |
- 3.1.2.5.2. The example of gadolinium molybdate, Gd2(MoO4)3 (pp. 367-369) | html | pdf |
- 3.1.2.5.2.1. Experimental identification of the order-parameter symmetry (pp. 367-368) | html | pdf |
- 3.1.2.5.2.2. Construction of the free energy and stable states (pp. 368-369) | html | pdf |
- 3.1.2.5.2.3. Macroscopic behaviour of GMO (p. 369) | html | pdf |
- 3.1.3. Equitranslational phase transitions. Property tensors at ferroic phase transitions (pp. 370-381) | html | pdf |
- 3.1.3.1. Equitranslational phase transitions and their order parameters (p. 370) | html | pdf |
- 3.1.3.2. Property tensors at ferroic phase transitions. Tensor parameters (pp. 370-375) | html | pdf |
- 3.1.3.3. Tables of equitranslational phase transitions associated with irreducible representations (pp. 375-380) | html | pdf |
- 3.1.3.3.1. Explanation of Table 3.1.3.1 (pp. 378-380) | html | pdf |
- 3.1.3.4. Examples (pp. 380-381) | html | pdf |
- 3.1.4. Example of a table for non-equitranslational phase transitions (p. 381) | html | pdf |
- 3.1.5. Microscopic aspects of structural phase transitions and soft modes (pp. 381-392) | html | pdf |
- 3.1.5.1. Introduction (p. 381) | html | pdf |
- 3.1.5.2. Displacive phase transitions (pp. 381-392) | html | pdf |
- 3.1.5.2.1. Landau–Devonshire theory (pp. 381-382) | html | pdf |
- 3.1.5.2.2. Soft modes (pp. 382-383) | html | pdf |
- 3.1.5.2.3. Strontium titanate, SrTiO3 (pp. 383-385) | html | pdf |
- 3.1.5.2.4. Lanthanum aluminate, LaAlO3 (p. 385) | html | pdf |
- 3.1.5.2.5. Potassium nitrate, KNO3 (p. 385) | html | pdf |
- 3.1.5.2.6. Lanthanum pentaphosphate (pp. 385-386) | html | pdf |
- 3.1.5.2.7. Barium manganese tetrafluoride (pp. 386-387) | html | pdf |
- 3.1.5.2.8. Barium sodium niobate (p. 387) | html | pdf |
- 3.1.5.2.9. Tris-sarcosine calcium chloride (TSCC) (pp. 387-388) | html | pdf |
- 3.1.5.2.10. Potassium dihydrogen phosphate, KH2PO4 (pp. 388-389) | html | pdf |
- 3.1.5.2.11. Sodium nitrite, NaNO2 (pp. 389-390) | html | pdf |
- 3.1.5.2.12. Fast ion conductors (p. 390) | html | pdf |
- 3.1.5.2.13. High-temperature superconductors (pp. 390-392) | html | pdf |
- 3.1.5.3. Low-temperature ferroelectric transitions (p. 392) | html | pdf |
- 3.1.6. Group informatics and tensor calculus (pp. 392-394) | html | pdf |
- 3.1.7. Glossary (p. 394) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.1.1.1. Ferroic classification of structural parameters (p. 359) | html | pdf |
- Table 3.1.2.1. Transformation of the components of under the symmetry operations of group (p. 363) | html | pdf |
- Table 3.1.2.2. Matrices defining the irreducible representations of for (p. 368) | html | pdf |
- Table 3.1.2.3. Action of the generators of on the order parameter and on the polarization and strain components (p. 369) | html | pdf |
- Table 3.1.3.1. Point-group symmetry descents associated with irreducible representations (pp. 372-377) | html | pdf |
- Table 3.1.3.2. Symmetry descents associated with two irreducible representations (p. 378) | html | pdf |
- Table 3.1.3.3. Important property tensors (p. 380) | html | pdf |
- Table 3.1.4.1. Possible symmetry changes across transitions from a parent phase with space group , , , , or (p. 382) | html | pdf |
- Table 3.1.5.1. Low-temperature ferroelectrics (p. 392) | html | pdf |
- 3.2. Twinning and domain structures (pp. 397-412) | html | pdf | chapter contents |
- 3.2.1. Introduction and history (pp. 397-398) | html | pdf |
- 3.2.2. A brief survey of bicrystallography (pp. 398-399) | html | pdf |
- 3.2.3. Mathematical tools (pp. 399-410) | html | pdf |
- 3.2.3.1. Sets, pairs, mappings and equivalence classes (pp. 400-401) | html | pdf |
- 3.2.3.1.1. Sets (p. 400) | html | pdf |
- 3.2.3.1.2. Pairs (p. 400) | html | pdf |
- 3.2.3.1.3. Mappings (pp. 400-401) | html | pdf |
- 3.2.3.1.4. Equivalence relation on a set, partition of a set (p. 401) | html | pdf |
- 3.2.3.2. Groups and subgroups (pp. 401-405) | html | pdf |
- 3.2.3.2.1. Groups (pp. 401-402) | html | pdf |
- 3.2.3.2.2. Subgroups (p. 402) | html | pdf |
- 3.2.3.2.3. Left and right cosets (pp. 402-403) | html | pdf |
- 3.2.3.2.4. Conjugate subgroups (p. 403) | html | pdf |
- 3.2.3.2.5. Normalizers (p. 403) | html | pdf |
- 3.2.3.2.6. Normal subgroups (p. 403) | html | pdf |
- 3.2.3.2.7. Halving subgroups and dichromatic (black-and-white) groups (p. 404) | html | pdf |
- 3.2.3.2.8. Double cosets (pp. 404-405) | html | pdf |
- 3.2.3.3. Action of a group on a set (pp. 405-410) | html | pdf |
- 3.2.3.3.1. Group action (pp. 405-406) | html | pdf |
- 3.2.3.3.2. Stabilizers (isotropy groups) (pp. 406-407) | html | pdf |
- 3.2.3.3.3. Orbits (pp. 407-408) | html | pdf |
- 3.2.3.3.4. Orbits and left cosets (p. 408) | html | pdf |
- 3.2.3.3.5. Intermediate subgroups and partitions of an orbit into suborbits (pp. 408-410) | html | pdf |
- 3.2.3.3.6. Orbits of ordered pairs and double cosets (p. 410) | html | pdf |
- References
| html | pdf |
- Tables
- Table 3.2.3.1. Four types of double cosets (p. 404) | html | pdf |
- 3.3. Twinning of crystals (pp. 413-487) | html | pdf | chapter contents |
- 3.3.1. Crystal aggregates and intergrowths (pp. 413-414) | html | pdf |
- 3.3.2. Basic concepts and definitions of twinning (pp. 414-418) | html | pdf |
- 3.3.2.1. Definition of a twin (p. 415) | html | pdf |
- 3.3.2.2. Essential addenda to the definition (p. 415) | html | pdf |
- 3.3.2.3. Specifications and extensions of the orientation relations (p. 417) | html | pdf |
- 3.3.2.3.1. Binary twin operations (twin elements) (pp. 415-417) | html | pdf |
- 3.3.2.3.2. Pseudo n-fold twin rotations (twin axes) with (pp. 416-417) | html | pdf |
- 3.3.2.4. Notes on the definition of twinning (pp. 417-418) | html | pdf |
- 3.3.3. Morphological classification, simple and multiple twinning (pp. 418-419) | html | pdf |
- 3.3.3.1. Morphological classification (p. 419) | html | pdf |
- 3.3.4. Composite symmetry and the twin law (pp. 419-423) | html | pdf |
- 3.3.4.1. Composite symmetry (pp. 419-420) | html | pdf |
- 3.3.4.2. Equivalent twin laws (p. 421) | html | pdf |
- 3.3.4.3. Classification of composite symmetries (pp. 421-422) | html | pdf |
- 3.3.4.4. Categories of composite symmetries (pp. 422-423) | html | pdf |
- 3.3.5. Description of the twin law by black–white symmetry (p. 423) | html | pdf |
- 3.3.6. Examples of twinned crystals (pp. 423-436) | html | pdf |
- 3.3.6.1. Macroscopic identification of twins and of twin laws (p. 423) | html | pdf |
- 3.3.6.2. Inversion twins in orthorhombic crystals (pp. 425-426) | html | pdf |
- 3.3.6.3. Twinning of gypsum, CaSO4·2H2O (pp. 426-427) | html | pdf |
- 3.3.6.4. Twinning of low-temperature quartz (α-quartz, SiO2) (pp. 427-428) | html | pdf |
- 3.3.6.4.1. Dauphiné twins (p. 427) | html | pdf |
- 3.3.6.4.2. Brazil twins (pp. 427-428) | html | pdf |
- 3.3.6.4.3. Combined Dauphiné–Brazil (Leydolt, Liebisch) twins (p. 428) | html | pdf |
- 3.3.6.4.4. Japanese twins (or La Gardette twins) (p. 428) | html | pdf |
- 3.3.6.5. Twinning of high-temperature quartz (β-quartz) (pp. 428-429) | html | pdf |
- 3.3.6.6. Twinning of rhombohedral crystals (p. 429) | html | pdf |
- 3.3.6.7. Spinel twins (pp. 429-431) | html | pdf |
- 3.3.6.8. Growth and transformation twins of K2SO4 (p. 431) | html | pdf |
- 3.3.6.9. Pentagonal–decagonal twins (pp. 431-432) | html | pdf |
- 3.3.6.10. Multiple twins of rutile, TiO2 (pp. 432-433) | html | pdf |
- 3.3.6.11. Variety of twinning in gibbsite, Al(OH)3 (p. 433) | html | pdf |
- 3.3.6.12. Plagioclase twins (pp. 433-434) | html | pdf |
- 3.3.6.13. Staurolite (pp. 434-435) | html | pdf |
- 3.3.6.14. BaTiO3 transformation twins (p. 435) | html | pdf |
- 3.3.6.15. Merohedral growth twinning of pentaerythrite (p. 435) | html | pdf |
- 3.3.6.16. Twins of twins (pp. 435-436) | html | pdf |
- 3.3.7. Genetic classification of twins (pp. 436-440) | html | pdf |
- 3.3.7.1. Growth twinning (pp. 436-438) | html | pdf |
- 3.3.7.1.1. Twinning by nucleation (pp. 436-437) | html | pdf |
- 3.3.7.1.2. Twinning during crystal growth (pp. 437-438) | html | pdf |
- 3.3.7.2. Transformation twinning (pp. 438-439) | html | pdf |
- 3.3.7.3. Mechanical twinning (pp. 439-440) | html | pdf |
- 3.3.8. Lattice aspects of twinning (pp. 440-446) | html | pdf |
- 3.3.8.1. Basic concepts of Friedel's lattice theory (p. 441) | html | pdf |
- 3.3.8.2. Lattice coincidences, twin lattice, twin lattice index (pp. 441-442) | html | pdf |
- 3.3.8.3. Twins with three-dimensional twin lattices (`triperiodic' twins) (pp. 442-443) | html | pdf |
- 3.3.8.4. Approximate (pseudo-)coincidences of two or more lattices (p. 444) | html | pdf |
- 3.3.8.5. Twin obliquity and lattice pseudosymmetry (pp. 444-446) | html | pdf |
- 3.3.8.6. Twinning of isostructural crystals (p. 446) | html | pdf |
- 3.3.8.7. Conclusions (p. 446) | html | pdf |
- 3.3.9. Twinning by merohedry and pseudo-merohedry (pp. 446-450) | html | pdf |
- 3.3.9.1. Definitions of merohedry (p. 447) | html | pdf |
- 3.3.9.2. Types of twins by merohedry and pseudo-merohedry (pp. 447-450) | html | pdf |
- 3.3.9.2.1. Merohedral twins of lattice index (p. 447) | html | pdf |
- 3.3.9.2.2. Pseudo-merohedral twins of lattice index (pp. 447-448) | html | pdf |
- 3.3.9.2.3. Twinning with partial lattice coincidence (lattice index ) (p. 448) | html | pdf |
- 3.3.9.2.4. Twinning with partial lattice pseudo-coincidence (lattice index ) (pp. 448-450) | html | pdf |
- 3.3.9.3. Pseudo-merohedry and ferroelasticity (p. 450) | html | pdf |
- 3.3.10. Twin boundaries (pp. 450-469) | html | pdf |
- 3.3.10.1. Contact relations in twinning (pp. 450-451) | html | pdf |
- 3.3.10.2. Strain compatibility of interfaces (pp. 451-455) | html | pdf |
- 3.3.10.2.1. Sapriel approach to permissible (compatible) boundaries in ferroelastic (non-merohedral) transformation twins (p. 452) | html | pdf |
- 3.3.10.2.2. Extension to non-merohedral growth and mechanical twins (pp. 452-454) | html | pdf |
- 3.3.10.2.3. Permissible boundaries in merohedral twins (lattice index [j] = 1) (p. 454) | html | pdf |
- 3.3.10.2.4. Permissible twin boundaries in twins with lattice index (pp. 454-455) | html | pdf |
- 3.3.10.3. Electrical constraints of twin interfaces (pp. 455-456) | html | pdf |
- 3.3.10.3.1. Merohedral twins (pp. 455-456) | html | pdf |
- 3.3.10.3.2. Non-merohedral twins (p. 456) | html | pdf |
- 3.3.10.3.3. Non-pyroelectric noncentrosymmetric crystals (p. 456) | html | pdf |
- 3.3.10.4. Displacement and fault vectors of twin boundaries (pp. 456-459) | html | pdf |
- 3.3.10.4.1. Twin displacement vector (pp. 457-458) | html | pdf |
- 3.3.10.4.2. Fault vectors of twin boundaries in merohedral twins (p. 458) | html | pdf |
- 3.3.10.4.3. Examples of fault-vector determinations (pp. 458-459) | html | pdf |
- 3.3.10.5. Examples of structural models of twin boundaries (pp. 459-461) | html | pdf |
- 3.3.10.5.1. Aragonite, CaCO3 (p. 459) | html | pdf |
- 3.3.10.5.2. Dauphiné twins of -quartz (pp. 459-460) | html | pdf |
- 3.3.10.5.3. Potassium lithium sulfate, KLiSO4 (pp. 460-461) | html | pdf |
- 3.3.10.5.4. Twin models of molecular crystals (p. 461) | html | pdf |
- 3.3.10.6. Observations of twin boundaries by transmission electron microscopy (pp. 461-464) | html | pdf |
- 3.3.10.6.1. Anatase, TiO2 (Penn & Banfield, 1998, 1999) (pp. 461-462) | html | pdf |
- 3.3.10.6.2. Rutile, TiO2 (p. 462) | html | pdf |
- 3.3.10.6.3. Cassiterite, SnO2 (rutile structure) (p. 462) | html | pdf |
- 3.3.10.6.4. Σ3 (111) twin interface in BaTiO3 [cf. Section 3.3.8.3(iii)] (pp. 462-463) | html | pdf |
- 3.3.10.6.5. Σ = 3 bicrystal boundaries in Cu and Ag (p. 463) | html | pdf |
- 3.3.10.6.6. Fivefold cyclic twins in nanocrystalline materials (pp. 463-464) | html | pdf |
- 3.3.10.7. Twin textures (pp. 464-467) | html | pdf |
- 3.3.10.7.1. Merohedral (non-ferroelastic) twins (see Sections 3.3.9 and 3.3.10.2.3) (p. 464) | html | pdf |
- 3.3.10.7.2. Non-merohedral (ferroelastic) twins (p. 464) | html | pdf |
- 3.3.10.7.3. Fitting problems of ferroelastic twins (pp. 464-466) | html | pdf |
- 3.3.10.7.4. Tweed microstructures (pp. 466-467) | html | pdf |
- 3.3.10.7.5. Twin textures in polycrystalline aggregates (p. 467) | html | pdf |
- 3.3.10.8. Twinning dislocations (pp. 467-468) | html | pdf |
- 3.3.10.9. Coherent and incoherent twin interfaces (pp. 468-469) | html | pdf |
- 3.3.11. Effect of twinning in reciprocal space (pp. 469-477) | html | pdf |
- 3.3.11.1. Basic features of twin diffraction records (pp. 469-470) | html | pdf |
- 3.3.11.2. General (non-merohedral, inclined-lattice) twins (p. 470) | html | pdf |
- 3.3.11.3. Twinning by (strict) merohedry (parallel-lattice twins, Σ1 merohedral twins) (pp. 470-471) | html | pdf |
- 3.3.11.4. Twinning by reticular merohedry (partially-parallel-lattice twins, Σ > 1 merohedral twins) (pp. 471-474) | html | pdf |
- 3.3.11.4.1. General survey (pp. 471-472) | html | pdf |
- 3.3.11.4.2. The four Σm merohedral twin families (pp. 472-474) | html | pdf |
- 3.3.11.5. Pseudo-merohedral twins (pp. 474-477) | html | pdf |
- 3.3.11.5.1. General remarks (pp. 474-475) | html | pdf |
- 3.3.11.5.2. Example: pseudohexagonal (cyclic) twins of orthorhombic crystals (pseudo-coincident Σ3 twins) (pp. 475-477) | html | pdf |
- 3.3.11.6. Programs for structure determinations with twinned crystals (p. 477) | html | pdf |
- 3.3.12. Domain structures (by V. Janovec) (p. 477) | html | pdf |
- 3.3.13. Glossary (pp. 477-478) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.3.4.1. Gypsum, dovetail twins: coset of alternative twin operations (twin law), given in orthorhombic axes of the composite symmetry (p. 420) | html | pdf |
- Table 3.3.4.2. Reduced composite symmetries and for the orthorhombic example in Fig. 3.3.4.2 (p. 422) | html | pdf |
- Table 3.3.6.1. Types of X-ray reflections generating (`yes') or not generating (`no') X-ray topographic domain contrast (yes/no) for the growth twins of KLiSO4 (p. 425) | html | pdf |
- Table 3.3.6.2. Orthorhombic inversion twins: coset of alternative twin operations (twin law) (p. 426) | html | pdf |
- Table 3.3.6.3. Gypsum: cosets of alternative twin operations of the dovetail and the Montmartre twins, referred to their specific orthorhombic axes (subscripts D and M) (p. 427) | html | pdf |
- Table 3.3.6.4. Dauphiné twins of α-quartz: coset of alternative twin operations (twin law) (p. 428) | html | pdf |
- Table 3.3.6.5. The four different variants of Japanese twins according to Frondel (1962) (p. 429) | html | pdf |
- Table 3.3.6.6. Plagioclase: albite and pericline twins (p. 434) | html | pdf |
- Table 3.3.8.1. Lattice planes (hkl) and lattice rows [uvw] that are mutually perpendicular (after Koch, 2004) (p. 441) | html | pdf |
- Table 3.3.8.2. Examples of calculated obliquities and lattice indices [j] for selected (hkl)[uvw] combinations and their relation to twinning (p. 445) | html | pdf |
- Table 3.3.9.1. Staurolite, 60° and 90° twins (p. 449) | html | pdf |
- Table 3.3.10.1. Examples of permissible twin boundaries for higher-order merohedral twins ([j]> 1) (p. 455) | html | pdf |
- Table 3.3.11.1. Relative frequencies of the four coincidence cases (i)–(iv) for the general Σm twins and the specific twins Σ3, Σ5 and Σ7 treated in this chapter. (p. 472) | html | pdf |
- 3.4. Domain structures (pp. 484-559) | html | pdf | chapter contents |
- 3.4.1. Introduction (pp. 484-486) | html | pdf |
- 3.4.1.1. Basic concepts (pp. 484-485) | html | pdf |
- 3.4.1.2. Scope of this chapter (pp. 485-486) | html | pdf |
- 3.4.2. Domain states (pp. 486-505) | html | pdf |
- 3.4.2.1. Principal and basic domain states (pp. 486-490) | html | pdf |
- 3.4.2.2. Degenerate (secondary) domain states, partition of principal domain states (pp. 490-493) | html | pdf |
- 3.4.2.2.1. Ferroelastic domain state (pp. 491-492) | html | pdf |
- 3.4.2.2.2. Ferroelectric domain states (p. 492) | html | pdf |
- 3.4.2.2.3. Domain states with the same stabilizer (pp. 492-493) | html | pdf |
- 3.4.2.3. Property tensors associated with ferroic domain states (pp. 493-495) | html | pdf |
- 3.4.2.4. Synoptic table of ferroic transitions and domain states (pp. 495-497) | html | pdf |
- 3.4.2.4.1. Explanation of Table 3.4.2.7 (pp. 496-497) | html | pdf |
- 3.4.2.5. Basic (microscopic) domain states and their partition into translation subsets (pp. 497-505) | html | pdf |
- 3.4.3. Domain pairs: domain twin laws, distinction of domain states and switching (pp. 505-528) | html | pdf |
- 3.4.3.1. Domain pairs and their symmetry, twin law (pp. 506-508) | html | pdf |
- 3.4.3.2. Twinning group, distinction of two domain states (pp. 508-510) | html | pdf |
- 3.4.3.3. Switching of ferroic domain states (pp. 510-511) | html | pdf |
- 3.4.3.4. Classes of equivalent domain pairs and their classifications (pp. 511-512) | html | pdf |
- 3.4.3.5. Non-ferroelastic domain pairs: twin laws, domain distinction and switching fields, synoptic table (pp. 512-515) | html | pdf |
- 3.4.3.5.1. Explanation of Table 3.4.3.4 (pp. 512-515) | html | pdf |
- 3.4.3.6. Ferroelastic domain pairs (pp. 515-528) | html | pdf |
- 3.4.3.6.1. Spontaneous strain (pp. 516-517) | html | pdf |
- 3.4.3.6.2. Equally deformed planes of a ferroelastic domain pair (pp. 517-518) | html | pdf |
- 3.4.3.6.3. Disoriented domain states, ferroelastic domain twins and their twin laws (pp. 518-521) | html | pdf |
- 3.4.3.6.4. Ferroelastic domain pairs with compatible domain walls, synoptic table (pp. 521-527) | html | pdf |
- 3.4.3.6.4.1. Explanation of Table 3.4.3.6 (pp. 526-527) | html | pdf |
- 3.4.3.6.5. Ferroelastic domain pairs with no compatible domain walls, synoptic table (pp. 527-528) | html | pdf |
- 3.4.3.7. Domain pairs in the microscopic description (p. 528) | html | pdf |
- 3.4.4. Domain twins and domain walls (pp. 528-539) | html | pdf |
- 3.4.4.1. Formal description of simple domain twins and planar domain walls of zero thickness (pp. 528-529) | html | pdf |
- 3.4.4.2. Layer groups (pp. 529-530) | html | pdf |
- 3.4.4.3. Symmetry of simple twins and planar domain walls of zero thickness (pp. 530-533) | html | pdf |
- 3.4.4.4. Non-ferroelastic domain twins and domain walls (pp. 533-535) | html | pdf |
- 3.4.4.5. Ferroelastic domain twins and walls. Ferroelastic twin laws (p. 535) | html | pdf |
- 3.4.4.6. Domain walls of finite thickness – continuous description (pp. 535-538) | html | pdf |
- 3.4.4.7. Microscopic structure and symmetry of domain walls (p. 538) | html | pdf |
- 3.4.5. Glossary (p. 539) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.4.2.1. Left and double cosets, principal and secondary domain states and their tensor parameters for the phase transition with and (p. 489) | html | pdf |
- Table 3.4.2.2. Crystal systems, holohedries, crystal families and number of spontaneous strain components (p. 491) | html | pdf |
- Table 3.4.2.3. Classification of ferroic phases according to ferroelastic and ferroelectric domain states (p. 492) | html | pdf |
- Table 3.4.2.4. Morphic properties, tensor parameters, order parameters and domain states (p. 494) | html | pdf |
- Table 3.4.2.5. Symbols of symmetry operations of the point group (p. 495) | html | pdf |
- Table 3.4.2.6. Symbols of symmetry operations of the point group (p. 496) | html | pdf |
- Table 3.4.2.7. Group–subgroup symmetry descents (pp. 498-502) | html | pdf |
- Table 3.4.3.1. Classification of domain pairs, ferroic phases and of switching (state shifts) (p. 510) | html | pdf |
- Table 3.4.3.2. Four types of domain pairs (p. 511) | html | pdf |
- Table 3.4.3.3. Decomposition of into left cosets of (p. 512) | html | pdf |
- Table 3.4.3.4. Non-ferroelastic domain pairs, domain twin laws and distinction of non-ferroelastic domains (pp. 513-514) | html | pdf |
- Table 3.4.3.5. Property tensors and switching fields (p. 514) | html | pdf |
- Table 3.4.3.6. Ferroelastic domain pairs and twins with compatible domain walls (pp. 521-526) | html | pdf |
- Table 3.4.3.7. Ferroelastic domain pairs with no compatible domain walls (p. 527) | html | pdf |
- Table 3.4.4.1. Crystallographic layer groups with continuous translations (p. 530) | html | pdf |
- Table 3.4.4.2. Action of four types of operations g on a twin (p. 531) | html | pdf |
- Table 3.4.4.3. Classification of domain walls and simple twins (p. 532) | html | pdf |
- Table 3.4.4.4. Symmetries of non-ferroelastic domain twins and walls (p. 533) | html | pdf |
- Table 3.4.4.5. Symmetry properties of domain walls in α quartz (p. 534) | html | pdf |
- Table 3.4.4.6. Symmetry properties of ferroelastic domain twins and compatible domain walls (p. 536) | html | pdf |
- Table 3.4.4.7. Sectional layer groups and twin (wall) symmetries of the twin in a calomel crystal (p. 539) | html | pdf |
- List of terms and symbols used in this volume (pp. 545-547) | html | pdf |