International Tables for Crystallography
Volume H: Powder diffraction
First online edition (2019) ISBN: 978-1-118-41628-0 doi: 10.1107/97809553602060000115
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk
Contents
- Introduction
- 1.1. Overview and principles of powder diffraction (pp. 2-23) | html | pdf | chapter contents |
- 1.1.1. Information content of a powder pattern (p. 2) | html | pdf |
- 1.1.2. The peak position (pp. 2-9) | html | pdf |
- 1.1.2.1. The Bragg equation derived (pp. 2-4) | html | pdf |
- 1.1.2.2. The Bragg equation from the reciprocal lattice (pp. 4-6) | html | pdf |
- 1.1.2.3. The Bragg equation from the Laue equation (pp. 6-7) | html | pdf |
- 1.1.2.4. The Ewald construction and Debye–Scherrer cones (pp. 7-9) | html | pdf |
- 1.1.3. The peak intensity (pp. 9-11) | html | pdf |
- 1.1.3.1. Adding phase-shifted amplitudes (pp. 9-11) | html | pdf |
- 1.1.4. The peak profile (pp. 11-15) | html | pdf |
- 1.1.4.1. Sample contributions to the peak profile (pp. 13-15) | html | pdf |
- 1.1.4.1.1. Crystallite size (pp. 13-14) | html | pdf |
- 1.1.4.1.2. Microstrain (pp. 14-15) | html | pdf |
- 1.1.5. The background (pp. 15-19) | html | pdf |
- 1.1.5.1. Information content in the background (p. 15) | html | pdf |
- 1.1.5.2. Background from extraneous sources (pp. 15-16) | html | pdf |
- 1.1.5.3. Sources of background from the sample (pp. 16-19) | html | pdf |
- 1.1.5.3.1. Elastic coherent diffuse scattering (p. 16) | html | pdf |
- 1.1.5.3.2. Total-scattering and atomic pair distribution function analysis (pp. 16-18) | html | pdf |
- 1.1.5.3.3. Inelastic coherent diffuse scattering (pp. 18-19) | html | pdf |
- 1.1.5.3.4. Incoherent scattering (p. 19) | html | pdf |
- 1.1.6. Local and global optimization of crystal structures from powder diffraction data (pp. 19-22) | html | pdf |
- 1.1.6.1. Rietveld refinement (pp. 19-22) | html | pdf |
- 1.1.6.2. Local structure refinement (p. 22) | html | pdf |
- 1.1.6.3. Parametric Rietveld refinement (p. 22) | html | pdf |
- 1.1.7. Outlook (pp. 22-23) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.1.1. Types of scattering from a sample (p. 15) | html | pdf |
- Instrumentation and sample preparation
- 2.1. Instrumentation for laboratory X-ray scattering techniques (pp. 26-50) | html | pdf | chapter contents |
- 2.1.1. Introduction (p. 26) | html | pdf |
- 2.1.2. Scope and terminology (p. 26) | html | pdf |
- 2.1.3. Historical overview (pp. 26-28) | html | pdf |
- 2.1.3.1. From film cameras to diffractometers (pp. 26-28) | html | pdf |
- 2.1.3.1.1. Film cameras (pp. 26-27) | html | pdf |
- 2.1.3.1.2. Diffractometers (pp. 27-28) | html | pdf |
- 2.1.3.2. Recent years (p. 28) | html | pdf |
- 2.1.4. The platform concept – fitting the instrument to the need (pp. 28-32) | html | pdf |
- 2.1.4.1. Basic design principles and instrument geometry considerations (pp. 28-30) | html | pdf |
- 2.1.4.2. Range of hardware (pp. 30-31) | html | pdf |
- 2.1.4.3. Range of applications (pp. 31-32) | html | pdf |
- 2.1.5. Goniometer designs (pp. 32-36) | html | pdf |
- 2.1.5.1. Geometrical conventions and scan modes (pp. 32-34) | html | pdf |
- 2.1.5.1.1. Goniometer base (pp. 32-34) | html | pdf |
- 2.1.5.1.2. Specimen stage (p. 34) | html | pdf |
- 2.1.5.2. Accuracy and precision (pp. 34-35) | html | pdf |
- 2.1.5.3. Hybrid beam-path systems (pp. 35-36) | html | pdf |
- 2.1.5.3.1. Multiple-beam-path systems (p. 35) | html | pdf |
- 2.1.5.3.2. Non-coplanar beam-path systems (pp. 35-36) | html | pdf |
- 2.1.6. X-ray sources and optics (pp. 36-45) | html | pdf |
- 2.1.6.1. X-ray beam quality measures (pp. 36-37) | html | pdf |
- 2.1.6.2. X-ray sources (pp. 37-39) | html | pdf |
- 2.1.6.2.1. Generation of X-rays and the X-ray spectrum (p. 37) | html | pdf |
- 2.1.6.2.2. Types of X-ray sources (pp. 37-39) | html | pdf |
- 2.1.6.2.2.1. Fixed-target X-ray sources (pp. 38-39) | html | pdf |
- 2.1.6.2.2.2. Moving-target X-ray sources (p. 39) | html | pdf |
- 2.1.6.2.3. Performance of X-ray sources (p. 39) | html | pdf |
- 2.1.6.3. X-ray optics (pp. 39-45) | html | pdf |
- 2.1.6.3.1. Absorptive X-ray optics (pp. 40-41) | html | pdf |
- 2.1.6.3.1.1. Apertures (p. 40) | html | pdf |
- 2.1.6.3.1.2. Metal filters (pp. 40-41) | html | pdf |
- 2.1.6.3.2. Diffractive X-ray optics (pp. 41-43) | html | pdf |
- 2.1.6.3.2.1. Single-reflection monochromators (pp. 41-42) | html | pdf |
- 2.1.6.3.2.2. Multiple-reflection monochromators (pp. 42-43) | html | pdf |
- 2.1.6.3.3. Reflective X-ray optics (pp. 43-44) | html | pdf |
- 2.1.6.3.3.1. Multilayer mirrors (pp. 43-44) | html | pdf |
- 2.1.6.3.3.2. Capillaries (p. 44) | html | pdf |
- 2.1.6.3.4. Combi-optics (pp. 44-45) | html | pdf |
- 2.1.7. X-ray detectors (pp. 45-49) | html | pdf |
- 2.1.7.1. Detector parameters (pp. 45-46) | html | pdf |
- 2.1.7.2. Detector types (pp. 46-48) | html | pdf |
- 2.1.7.2.1. Scintillation counters (pp. 46-47) | html | pdf |
- 2.1.7.2.2. Gas-ionization detectors (pp. 47-48) | html | pdf |
- 2.1.7.2.2.1. Wire-based proportional counters (p. 47) | html | pdf |
- 2.1.7.2.2.2. Micro-gap detectors (pp. 47-48) | html | pdf |
- 2.1.7.2.3. Semiconductor detectors (p. 48) | html | pdf |
- 2.1.7.2.3.1. The Si(Li) detector (p. 48) | html | pdf |
- 2.1.7.2.3.2. Silicon micro-strip and silicon pixel detectors (p. 48) | html | pdf |
- 2.1.7.2.3.3. CCD and CMOS detectors (p. 48) | html | pdf |
- 2.1.7.3. Position sensitivity and associated scanning modes (pp. 48-49) | html | pdf |
- 2.1.7.3.1. Pixel size, spatial resolution and angular resolution (p. 49) | html | pdf |
- 2.1.7.3.2. Dimensionality (p. 49) | html | pdf |
- 2.1.7.3.3. Size and shape (p. 49) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.1.1. Types of beam-path components available in laboratory X-ray powder diffraction (p. 31) | html | pdf |
- Table 2.1.2. X-ray applications for with modern X-ray diffractometers (p. 32) | html | pdf |
- Table 2.1.3. Characteristic wavelengths and absorption edges of metal filters in common use (p. 37) | html | pdf |
- Table 2.1.4. Maximum target loading and specific loading for some selected fixed- and moving-target X-ray sources (p. 39) | html | pdf |
- Table 2.1.5. Comparison of divergence and intensity for several types of germanium channel-cut monochromators (p. 43) | html | pdf |
- Table 2.1.6. Important detector properties at 8 keV as reported by various vendors (p. 47) | html | pdf |
- 2.2. Synchrotron radiation and powder diffraction (pp. 51-65) | html | pdf | chapter contents |
- 2.2.1. Introduction (p. 51) | html | pdf |
- 2.2.2. Production of synchrotron radiation (pp. 51-54) | html | pdf |
- 2.2.2.1. Bending magnets (pp. 52-53) | html | pdf |
- 2.2.2.2. Insertion devices (pp. 53-54) | html | pdf |
- 2.2.2.2.1. Wigglers (p. 53) | html | pdf |
- 2.2.2.2.2. Undulators (pp. 53-54) | html | pdf |
- 2.2.2.2.3. Tuning (p. 54) | html | pdf |
- 2.2.3. Optics (pp. 54-56) | html | pdf |
- 2.2.3.1. Monochromator (pp. 54-55) | html | pdf |
- 2.2.3.2. Mirror (pp. 55-56) | html | pdf |
- 2.2.3.3. Compound refractive lens (p. 56) | html | pdf |
- 2.2.4. Diffractometers (pp. 56-60) | html | pdf |
- 2.2.4.1. Parallel-beam instruments (pp. 56-58) | html | pdf |
- 2.2.4.1.1. Angular resolution (pp. 57-58) | html | pdf |
- 2.2.4.1.2. Hart–Parrish design (p. 58) | html | pdf |
- 2.2.4.2. Debye–Scherrer instruments (pp. 58-59) | html | pdf |
- 2.2.4.3. Energy-dispersive instruments (pp. 59-60) | html | pdf |
- 2.2.5. Considerations for powder-diffraction experiments (pp. 60-63) | html | pdf |
- 2.2.5.1. Polarization (pp. 60-61) | html | pdf |
- 2.2.5.2. Radiation damage (p. 61) | html | pdf |
- 2.2.5.3. Beam heating (p. 61) | html | pdf |
- 2.2.5.4. Choice of wavelength (pp. 61-62) | html | pdf |
- 2.2.5.5. Angular resolution (p. 62) | html | pdf |
- 2.2.5.6. Spatial resolution (p. 62) | html | pdf |
- 2.2.5.7. Time resolution (p. 63) | html | pdf |
- 2.2.5.7.1. Using fast detectors (p. 63) | html | pdf |
- 2.2.5.7.2. Using the pulse structure (p. 63) | html | pdf |
- 2.2.5.8. Beamline evolution (p. 63) | html | pdf |
- References
| html | pdf |
- Figures
- 2.3. Neutron powder diffraction (pp. 66-101) | html | pdf | chapter contents |
- 2.3.1. Introduction to the diffraction of thermal neutrons (pp. 66-67) | html | pdf |
- 2.3.2. Neutrons and neutron diffraction – pertinent details (pp. 67-70) | html | pdf |
- 2.3.2.1. Properties of the neutron (p. 67) | html | pdf |
- 2.3.2.2. Neutron scattering lengths (pp. 67-68) | html | pdf |
- 2.3.2.3. Refractive index for neutrons (pp. 68-69) | html | pdf |
- 2.3.2.4. Neutron attenuation (p. 69) | html | pdf |
- 2.3.2.5. Magnetic form factors and magnetic scattering lengths (pp. 69-70) | html | pdf |
- 2.3.2.6. Structure factors (p. 70) | html | pdf |
- 2.3.3. Neutron sources (pp. 70-80) | html | pdf |
- 2.3.3.1. The earliest neutron sources (pp. 70-72) | html | pdf |
- 2.3.3.2. Fission reactors for neutron-beam research (pp. 72-73) | html | pdf |
- 2.3.3.3. Spallation neutron sources (pp. 73-77) | html | pdf |
- 2.3.3.4. Neutron beam tubes and guides (pp. 77-80) | html | pdf |
- 2.3.4. Diffractometers (pp. 80-92) | html | pdf |
- 2.3.4.1. Constant-wavelength neutron diffractometers (pp. 80-84) | html | pdf |
- 2.3.4.1.1. Collimation (pp. 80-81) | html | pdf |
- 2.3.4.1.2. Monochromators (pp. 81-82) | html | pdf |
- 2.3.4.1.3. Neutron detectors (pp. 82-84) | html | pdf |
- 2.3.4.1.4. Resolution and intensity (p. 84) | html | pdf |
- 2.3.4.2. Time-of-flight (TOF) diffractometers (pp. 84-88) | html | pdf |
- 2.3.4.2.1. Instrument resolution and design (p. 86) | html | pdf |
- 2.3.4.2.2. Detection (pp. 86-88) | html | pdf |
- 2.3.4.3. Variations on a theme (pp. 88-91) | html | pdf |
- 2.3.4.4. Comparison of CW and TOF diffractometers (pp. 91-92) | html | pdf |
- 2.3.5. Experimental considerations (pp. 92-98) | html | pdf |
- 2.3.5.1. Preliminary considerations (pp. 92-94) | html | pdf |
- 2.3.5.2. Sample-related factors (pp. 94-96) | html | pdf |
- 2.3.5.3. Sample environment and in situ experiments (pp. 96-98) | html | pdf |
- 2.3.5.3.1. Sample containers (p. 96) | html | pdf |
- 2.3.5.3.2. Non-ambient temperature (pp. 96-98) | html | pdf |
- 2.3.5.3.3. Uniaxial stress (p. 98) | html | pdf |
- 2.3.6. Concluding remarks (p. 98) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.3.1. Properties of the neutron (adapted from Kisi & Howard, 2008) (p. 68) | html | pdf |
- Table 2.3.2. Coherent scattering lengths and absorption cross sections (for 25 meV neutrons) for selected isotopes (p. 69) | html | pdf |
- Table 2.3.3. Details on selected research reactors (p. 74) | html | pdf |
- Table 2.3.4. Details of selected spallation neutron sources (p. 79) | html | pdf |
- Table 2.3.5. Advantages of CW and TOF instruments (modified from Kisi & Howard, 2008) (p. 92) | html | pdf |
- Table 2.3.6. Suitability of problems to high-resolution or high-intensity diffractometers (p. 93) | html | pdf |
- Table 2.3.7. Guidance on choice of wavelength/detector bank (p. 93) | html | pdf |
- 2.4. Electron powder diffraction (pp. 102-117) | html | pdf | chapter contents |
- 2.4.1. Introduction (pp. 102-103) | html | pdf |
- 2.4.2. Electron powder diffraction pattern geometry and intensity (pp. 103-104) | html | pdf |
- 2.4.3. Electron powder diffraction techniques (pp. 105-108) | html | pdf |
- 2.4.3.1. Selected-area electron diffraction (SAED) (p. 105) | html | pdf |
- 2.4.3.2. Nano-area electron diffraction (NAED) (pp. 105-106) | html | pdf |
- 2.4.3.3. Sample preparation (pp. 106-107) | html | pdf |
- 2.4.3.4. Diffraction data collection, processing and calibration (pp. 107-108) | html | pdf |
- 2.4.4. Phase identification and phase analysis (pp. 108-110) | html | pdf |
- 2.4.5. Texture analysis (pp. 110-111) | html | pdf |
- 2.4.6. Rietveld refinement with electron diffraction data (pp. 111-113) | html | pdf |
- 2.4.7. The pair distribution function from electron diffraction data (pp. 113-114) | html | pdf |
- 2.4.8. Summary (p. 114) | html | pdf |
- Appendix 2.4.1. Computer programs for electron powder diffraction (pp. 114-115) | html | pdf |
- References
| html | pdf |
- Figures
- 2.5. Two-dimensional powder diffraction (pp. 118-149) | html | pdf | chapter contents |
- 2.5.1. Introduction (pp. 118-119) | html | pdf |
- 2.5.1.1. The diffraction pattern measured by an area detector (p. 118) | html | pdf |
- 2.5.1.2. Comparison between 2D-XRD and conventional XRD (p. 118) | html | pdf |
- 2.5.1.3. Advantages of two-dimensional X-ray diffraction (pp. 118-119) | html | pdf |
- 2.5.2. Fundamentals (pp. 119-123) | html | pdf |
- 2.5.2.1. Diffraction space and laboratory coordinates (pp. 119-121) | html | pdf |
- 2.5.2.1.1. Diffraction cones in laboratory coordinates (pp. 119-120) | html | pdf |
- 2.5.2.1.2. Diffraction-vector cones in laboratory coordinates (pp. 120-121) | html | pdf |
- 2.5.2.2. Detector space and pixel position (pp. 121-122) | html | pdf |
- 2.5.2.2.1. Detector position in the laboratory system (p. 121) | html | pdf |
- 2.5.2.2.2. Pixel position in diffraction space for a flat detector (pp. 121-122) | html | pdf |
- 2.5.2.2.3. Pixel position in diffraction space for a curved detector (p. 122) | html | pdf |
- 2.5.2.3. Sample space and goniometer geometry (pp. 122-123) | html | pdf |
- 2.5.2.3.1. Sample rotations and translations in Eulerian geometry (pp. 122-123) | html | pdf |
- 2.5.2.4. Diffraction-vector transformation (p. 123) | html | pdf |
- 2.5.2.4.1. Diffraction unit vector in diffraction space and sample space (p. 123) | html | pdf |
- 2.5.2.4.2. Transformation from diffraction space to sample space (p. 123) | html | pdf |
- 2.5.2.4.3. Transformation from detector space to reciprocal space (p. 123) | html | pdf |
- 2.5.3. Instrumentation (pp. 123-132) | html | pdf |
- 2.5.3.1. X-ray source and optics (pp. 124-125) | html | pdf |
- 2.5.3.1.1. Beam path in a diffractometer equipped with a 2D detector (p. 124) | html | pdf |
- 2.5.3.1.2. Liouville's theorem (pp. 124-125) | html | pdf |
- 2.5.3.1.3. X-ray source (p. 125) | html | pdf |
- 2.5.3.1.4. X-ray optics (p. 125) | html | pdf |
- 2.5.3.2. 2D detector (pp. 125-128) | html | pdf |
- 2.5.3.2.1. Active area and pixel size (pp. 126-127) | html | pdf |
- 2.5.3.2.2. Spatial resolution of area detectors (p. 127) | html | pdf |
- 2.5.3.2.3. Detective quantum efficiency and energy range (pp. 127-128) | html | pdf |
- 2.5.3.2.4. Detection limit and dynamic range (p. 128) | html | pdf |
- 2.5.3.2.5. Types of 2D detectors (p. 128) | html | pdf |
- 2.5.3.3. Data corrections and integration (pp. 128-132) | html | pdf |
- 2.5.3.3.1. Nonuniform response correction (pp. 128-129) | html | pdf |
- 2.5.3.3.2. Spatial correction (pp. 129-130) | html | pdf |
- 2.5.3.3.3. Frame integration (p. 130) | html | pdf |
- 2.5.3.3.4. Lorentz, polarization and absorption corrections (pp. 130-131) | html | pdf |
- 2.5.3.3.5. Air scatter (pp. 131-132) | html | pdf |
- 2.5.3.3.6. Sample absorption (p. 132) | html | pdf |
- 2.5.4. Applications (pp. 132-147) | html | pdf |
- 2.5.4.1. Phase identification (pp. 133-136) | html | pdf |
- 2.5.4.1.1. Relative intensity (p. 133) | html | pdf |
- 2.5.4.1.2. Detector distance and resolution (pp. 133-134) | html | pdf |
- 2.5.4.1.3. Defocusing effect (p. 134) | html | pdf |
- 2.5.4.1.4. Sampling statistics (pp. 134-136) | html | pdf |
- 2.5.4.2. Texture analysis (pp. 136-140) | html | pdf |
- 2.5.4.2.1. Pole density and pole figures (p. 136) | html | pdf |
- 2.5.4.2.2. Fundamental equations (pp. 136-138) | html | pdf |
- 2.5.4.2.3. Data-collection strategy (p. 138) | html | pdf |
- 2.5.4.2.4. Texture-data processing (pp. 138-139) | html | pdf |
- 2.5.4.2.5. Pole-figure interpolation and use of symmetry (p. 139) | html | pdf |
- 2.5.4.2.6. Orientation relationship (pp. 139-140) | html | pdf |
- 2.5.4.3. Stress measurement (pp. 140-145) | html | pdf |
- 2.5.4.3.1. Stress and strain relation (pp. 140-141) | html | pdf |
- 2.5.4.3.2. Fundamental equations (pp. 141-142) | html | pdf |
- 2.5.4.3.3. Equations for various stress states (p. 142) | html | pdf |
- 2.5.4.3.4. Data-collection strategy (p. 143) | html | pdf |
- 2.5.4.3.5. Data integration and peak evaluation (pp. 143-144) | html | pdf |
- 2.5.4.3.6. Stress calculation (p. 144) | html | pdf |
- 2.5.4.3.7. Comparison between the 2D method and the conventional method (pp. 144-145) | html | pdf |
- 2.5.4.4. Quantitative analysis (pp. 145-147) | html | pdf |
- 2.5.4.4.1. Crystallinity (p. 145) | html | pdf |
- 2.5.4.4.2. Crystallite size (pp. 145-147) | html | pdf |
- References
| html | pdf |
- Figures
- 2.6. Non-ambient-temperature powder diffraction (pp. 150-155) | html | pdf | chapter contents |
- 2.6.1. Introduction (p. 150) | html | pdf |
- 2.6.2. In situ powder diffraction (p. 150) | html | pdf |
- 2.6.3. Processes of interest (p. 150) | html | pdf |
- 2.6.4. General system setup of non-ambient chambers (pp. 150-151) | html | pdf |
- 2.6.4.1. Sample stage (p. 150) | html | pdf |
- 2.6.4.2. Temperature-control unit, process controller (pp. 150-151) | html | pdf |
- 2.6.4.3. Vacuum equipment, gas supply (p. 151) | html | pdf |
- 2.6.4.4. Water cooling (p. 151) | html | pdf |
- 2.6.4.5. Diffractometer and height-compensation mechanism (p. 151) | html | pdf |
- 2.6.5. Specimen properties (p. 151) | html | pdf |
- 2.6.6. High-temperature sample stages (pp. 151-153) | html | pdf |
- 2.6.6.1. Direct heating: strip heaters (pp. 151-152) | html | pdf |
- 2.6.6.2. Environmental heating: the oven (p. 152) | html | pdf |
- 2.6.6.3. Environmental heating: lamp furnace (pp. 152-153) | html | pdf |
- 2.6.6.4. Domed hot stage (p. 153) | html | pdf |
- 2.6.7. Low-temperature sample stages (pp. 153-154) | html | pdf |
- 2.6.7.1. Cryogenic cooling stages/cryostat (pp. 153-154) | html | pdf |
- 2.6.7.2. Cryogenic cooling stages/cryostream (p. 154) | html | pdf |
- 2.6.8. Temperature accuracy (pp. 154-155) | html | pdf |
- 2.6.9. Future (p. 155) | html | pdf |
- References
| html | pdf |
- Figures
- 2.7. High-pressure devices (pp. 156-173) | html | pdf | chapter contents |
- 2.7.1. Introduction (p. 156) | html | pdf |
- 2.7.2. Historical perspective (pp. 156-157) | html | pdf |
- 2.7.3. Main types of high-pressure environments (pp. 157-159) | html | pdf |
- 2.7.4. The diamond-anvil cell (DAC) (pp. 159-160) | html | pdf |
- 2.7.5. Variable-temperature high-pressure devices (pp. 160-161) | html | pdf |
- 2.7.6. Soft and biomaterials under pressure (p. 161) | html | pdf |
- 2.7.7. Completeness of data (pp. 161-162) | html | pdf |
- 2.7.8. Single-crystal data collection (pp. 162-163) | html | pdf |
- 2.7.9. Powder diffraction with the DAC (pp. 163-164) | html | pdf |
- 2.7.10. Sample preparation (p. 164) | html | pdf |
- 2.7.11. Hydrostatic conditions (pp. 164-165) | html | pdf |
- 2.7.12. High-pressure chamber and gasket in the DAC (pp. 165-166) | html | pdf |
- 2.7.13. High-pressure neutron diffraction (p. 166) | html | pdf |
- 2.7.14. Pressure determination (pp. 166-167) | html | pdf |
- 2.7.15. High-pressure diffraction data corrections (pp. 167-168) | html | pdf |
- 2.7.16. Final remarks (p. 168) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.7.1. The (pseudo)hydrostatic limits of selected media at 296 K (Holzapfel, 1997; Miletich et al., 2000) (p. 165) | html | pdf |
- Table 2.7.2. Luminescence pressure sensors, their electronic transition types (s = singlet, d = doublet) and rates of spectral shifts (after Holzapfel, 1997) (p. 167) | html | pdf |
- Table 2.7.3. Parameters recommended for pressure determination by EOS measurements (p. 167) | html | pdf |
- Table 2.7.4. Pressure fixed points at ambient temperature (after Holzapfel, 1997; Hall, 1980) (p. 167) | html | pdf |
- 2.8. Powder diffraction in external electric and magnetic fields (pp. 174-188) | html | pdf | chapter contents |
- 2.8.1. Introduction (p. 174) | html | pdf |
- 2.8.2. Experimental conditions (pp. 174-177) | html | pdf |
- 2.8.2.1. Detectors (pp. 175-176) | html | pdf |
- 2.8.2.2. Absorption (pp. 176-177) | html | pdf |
- 2.8.2.3. Sample fluorescence and incoherent neutron scattering (p. 177) | html | pdf |
- 2.8.3. Examples (pp. 177-186) | html | pdf |
- 2.8.3.1. In situ studies of ferroelectrics in an external electric field (pp. 177-181) | html | pdf |
- 2.8.3.2. In situ studies of electrode materials and in operando investigations of Li-ion batteries (pp. 181-183) | html | pdf |
- 2.8.3.3. Diffraction under a magnetic field (pp. 183-186) | html | pdf |
- 2.8.3.3.1. General remarks (pp. 183-184) | html | pdf |
- 2.8.3.3.2. Frustrated magnetic systems (pp. 184-185) | html | pdf |
- 2.8.3.3.2.1. Kagomé staircase systems (pp. 184-185) | html | pdf |
- 2.8.3.3.2.2. Manganite systems (p. 185) | html | pdf |
- 2.8.3.3.3. Additional systems and scattering techniques (pp. 185-186) | html | pdf |
- 2.8.3.3.4. Concluding remarks (p. 186) | html | pdf |
- 2.8.4. Summary (p. 186) | html | pdf |
- References
| html | pdf |
- Figures
- 2.9. Cells for in situ powder-diffraction investigation of chemical reactions (pp. 189-199) | html | pdf | chapter contents |
- 2.9.1. Introduction (p. 189) | html | pdf |
- 2.9.2. Historical perspective (p. 189) | html | pdf |
- 2.9.3. Main types of reaction cells (pp. 189-197) | html | pdf |
- 2.9.3.1. Introduction (p. 189) | html | pdf |
- 2.9.3.2. Capillary cells (pp. 189-192) | html | pdf |
- 2.9.3.3. Reactions requiring specialist cells (pp. 192-195) | html | pdf |
- 2.9.3.3.1. Cells for electrochemistry (pp. 192-193) | html | pdf |
- 2.9.3.3.2. Cells with humidity control (pp. 193-194) | html | pdf |
- 2.9.3.3.3. Large-volume cells for energy-dispersive diffraction (p. 194) | html | pdf |
- 2.9.3.3.4. Large-volume cells for angular-dispersive diffraction (pp. 194-195) | html | pdf |
- 2.9.3.4. Cells specifically for neutrons (pp. 195-197) | html | pdf |
- 2.9.3.4.1. Introduction (pp. 195-196) | html | pdf |
- 2.9.3.4.2. Solid–gas reactions (p. 196) | html | pdf |
- 2.9.3.4.3. Electrochemistry using neutron diffraction (p. 196) | html | pdf |
- 2.9.3.4.4. Hydrothermal reaction cells (pp. 196-197) | html | pdf |
- 2.9.4. Complementary methods and future developments (p. 197) | html | pdf |
- References
| html | pdf |
- Figures
- 2.10. Specimen preparation (pp. 200-222) | html | pdf | chapter contents |
- 2.10.1. X-ray powder diffraction (pp. 200-218) | html | pdf |
- 2.10.1.1. Powders and particle statistics (granularity) (pp. 201-206) | html | pdf |
- 2.10.1.2. Preferred orientation (pp. 206-209) | html | pdf |
- 2.10.1.3. Absorption (surface roughness), microabsorption and extinction (pp. 209-211) | html | pdf |
- 2.10.1.3.1. Absorption (surface roughness) (pp. 209-210) | html | pdf |
- 2.10.1.3.2. Microabsorption (p. 210) | html | pdf |
- 2.10.1.3.3. Extinction (pp. 210-211) | html | pdf |
- 2.10.1.4. Holders (pp. 211-218) | html | pdf |
- 2.10.1.4.1. Reflection sample holders (pp. 211-213) | html | pdf |
- 2.10.1.4.2. Transmission sample holders (pp. 213-218) | html | pdf |
- 2.10.1.4.2.1. Flat foils (pp. 213-215) | html | pdf |
- 2.10.1.4.2.2. Capillaries (pp. 215-218) | html | pdf |
- 2.10.2. Neutron powder diffraction (pp. 218-221) | html | pdf |
- 2.10.2.1. Specimen form (p. 218) | html | pdf |
- 2.10.2.2. Sample size (p. 218) | html | pdf |
- 2.10.2.3. Specimen containment (pp. 218-219) | html | pdf |
- 2.10.2.4. Isotopes, absorption and activation (pp. 219-221) | html | pdf |
- 2.10.3. Conclusions (p. 221) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.10.1. Intensity (counts) and mean deviation in intensity of the main quartz 101 reflection with a stationary sample of -325 mesh quartz powder (p. 205) | html | pdf |
- Table 2.10.2. Theoretical behaviour of different crystallite sizes of quartz in a volume of 20 mm3 (p. 205) | html | pdf |
- Table 2.10.3. Absorption and physical characteristics of the capillaries whose data are shown in Fig. 2.10.46 (p. 215) | html | pdf |
- Methodology
- 3.1. The optics and alignment of the divergent-beam laboratory X-ray powder diffractometer and its calibration using NIST standard reference materials (pp. 224-251) | html | pdf | chapter contents |
- 3.1.1. Introduction (p. 224) | html | pdf |
- 3.1.2. The instrument profile function (pp. 224-230) | html | pdf |
- 3.1.3. Instrument alignment (pp. 230-235) | html | pdf |
- 3.1.4. SRMs, instrumentation and data-collection procedures (pp. 235-238) | html | pdf |
- 3.1.5. Data-analysis methods (pp. 238-241) | html | pdf |
- 3.1.6. Instrument calibration (pp. 241-250) | html | pdf |
- 3.1.7. Conclusions (p. 250) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.1.1. Aberrations comprising the geometric component of the IPF (p. 226) | html | pdf |
- Table 3.1.2. Run-time parameters used for collection of the data used for certification of SRM 660b (p. 238) | html | pdf |
- 3.2. The physics of diffraction from powders (pp. 252-262) | html | pdf | chapter contents |
- 3.2.1. Introduction (p. 252) | html | pdf |
- 3.2.2. Idealized diffraction from powders (pp. 252-257) | html | pdf |
- 3.2.2.1. Peak positions (pp. 252-253) | html | pdf |
- 3.2.2.2. Diffraction peak intensities (pp. 253-255) | html | pdf |
- 3.2.2.2.1. X-rays (pp. 253-254) | html | pdf |
- 3.2.2.2.2. Neutrons and nuclear scattering (p. 254) | html | pdf |
- 3.2.2.2.3. Neutrons and magnetic scattering (pp. 254-255) | html | pdf |
- 3.2.2.3. Peak shapes (pp. 255-257) | html | pdf |
- 3.2.2.3.1. Domain size (pp. 255-256) | html | pdf |
- 3.2.2.3.2. Strain (p. 256) | html | pdf |
- 3.2.2.3.3. Instrumental contributions (pp. 256-257) | html | pdf |
- 3.2.3. Complications due to non-ideal sample or instrument properties (pp. 257-261) | html | pdf |
- 3.2.3.1. Absorption within a homogeneous sample (pp. 257-258) | html | pdf |
- 3.2.3.2. Absorption with multiphase samples (p. 258) | html | pdf |
- 3.2.3.3. Granularity, microabsorption and surface roughness (pp. 258-259) | html | pdf |
- 3.2.3.4. Anisotropic strain broadening (pp. 259-260) | html | pdf |
- 3.2.3.5. Preferred orientation (texture) (p. 260) | html | pdf |
- 3.2.3.6. Extinction (pp. 260-261) | html | pdf |
- 3.2.4. The Debye scattering equation (p. 261) | html | pdf |
- 3.2.5. Summary (p. 261) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.2.1. Restrictions and reflections of anisotropic strain parameters for the various Laue classes (p. 260) | html | pdf |
- 3.3. Powder diffraction peak profiles (pp. 263-269) | html | pdf | chapter contents |
- 3.3.1. Introduction (p. 263) | html | pdf |
- 3.3.2. Peak profiles for constant-wavelength radiation (X-rays and neutrons) (pp. 263-265) | html | pdf |
- 3.3.2.1. Introduction – symmetric peak profiles (pp. 263-264) | html | pdf |
- 3.3.2.2. Constant-wavelength powder profile asymmetry (p. 264) | html | pdf |
- 3.3.2.3. Peak-displacement effects (pp. 264-265) | html | pdf |
- 3.3.2.4. Fundamental parameters profile modelling (p. 265) | html | pdf |
- 3.3.3. Peak profiles for neutron time-of-flight experiments (pp. 265-266) | html | pdf |
- 3.3.3.1. The experiment (p. 265) | html | pdf |
- 3.3.3.2. The neutron pulse shape (pp. 265-266) | html | pdf |
- 3.3.3.3. The neutron TOF powder peak profile (p. 266) | html | pdf |
- 3.3.4. Peak profiles for X-ray energy-dispersive experiments (pp. 266-267) | html | pdf |
- 3.3.5. Sample broadening (pp. 267-268) | html | pdf |
- 3.3.5.1. Crystallite size broadening (p. 267) | html | pdf |
- 3.3.5.2. Microstrain broadening (pp. 267-268) | html | pdf |
- References
| html | pdf |
- Figures
- 3.4. Indexing a powder diffraction pattern (pp. 270-281) | html | pdf | chapter contents |
- 3.4.1. Introduction (p. 270) | html | pdf |
- 3.4.2. The basic concepts of indexing (pp. 270-272) | html | pdf |
- 3.4.2.1. Figures of merit (pp. 271-272) | html | pdf |
- 3.4.2.2. Geometrical ambiguities (p. 272) | html | pdf |
- 3.4.3. Indexing methods (pp. 272-275) | html | pdf |
- 3.4.3.1. Traditional indexing methods (pp. 273-275) | html | pdf |
- 3.4.3.1.1. Zone-indexing strategy (pp. 273-274) | html | pdf |
- 3.4.3.1.2. Shirley–Ishida–Watanabe (SIW) heuristic strategy (p. 274) | html | pdf |
- 3.4.3.1.3. Index-heuristics (p. 274) | html | pdf |
- 3.4.3.1.4. Index-permutation strategy (p. 274) | html | pdf |
- 3.4.3.1.5. Successive-dichotomy search method (pp. 274-275) | html | pdf |
- 3.4.3.2. Non-traditional indexing methods (p. 275) | html | pdf |
- 3.4.3.2.1. The topographs method (p. 275) | html | pdf |
- 3.4.3.2.2. Global-optimization methods (p. 275) | html | pdf |
- 3.4.3.2.2.1. Genetic-algorithm search method (p. 275) | html | pdf |
- 3.4.3.2.2.2. Monte Carlo search method (p. 275) | html | pdf |
- 3.4.3.2.2.3. Grid-search method (p. 275) | html | pdf |
- 3.4.4. Software packages for indexing and examples of their use (pp. 275-280) | html | pdf |
- 3.4.4.1. Traditional indexing programs (p. 276) | html | pdf |
- 3.4.4.1.1. ITO (Visser, 1969) (p. 276) | html | pdf |
- 3.4.4.1.2. TREOR90 (Werner et al., 1985) (p. 276) | html | pdf |
- 3.4.4.1.3. DICVOL91 (Boultif & Louër, 1991) (p. 276) | html | pdf |
- 3.4.4.2. Evolved indexing programs (pp. 276-277) | html | pdf |
- 3.4.4.2.1. N-TREOR09 (Altomare et al., 2009) (pp. 276-277) | html | pdf |
- 3.4.4.2.2. DICVOL06 (Louër & Boultif, 2006, 2007) and DICVOL14 (Louër & Boultif, 2014) (p. 277) | html | pdf |
- 3.4.4.3. Non-traditional indexing programs (pp. 277-278) | html | pdf |
- 3.4.4.3.1. Conograph: indexing via the topographs method (p. 277) | html | pdf |
- 3.4.4.3.2. GAIN: indexing via a genetic-algorithm search method (pp. 277-278) | html | pdf |
- 3.4.4.3.3. McMaille: indexing via a Monte Carlo search method (p. 278) | html | pdf |
- 3.4.4.4. Crysfire: a suite of indexing programs (p. 278) | html | pdf |
- 3.4.4.5. Two commercial programs (p. 278) | html | pdf |
- 3.4.4.5.1. SVD-Index (p. 278) | html | pdf |
- 3.4.4.5.2. X-CELL (p. 278) | html | pdf |
- 3.4.4.6. Examples of applications of indexing programs (pp. 278-280) | html | pdf |
- 3.4.4.6.1. Indexing using DICVOL06 (pp. 278-279) | html | pdf |
- 3.4.4.6.2. Indexing using N-TREOR09 (pp. 279-280) | html | pdf |
- 3.4.5. Conclusion (p. 280) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.4.1. Expressions for Q(hkl) for different types of symmetry (p. 271) | html | pdf |
- Table 3.4.2. Examples of lattices leading to geometrical ambiguities (p. 273) | html | pdf |
- Table 3.4.3. Classification of indexing methods (p. 276) | html | pdf |
- 3.5. Data reduction to |Fhkl| values (pp. 282-287) | html | pdf | chapter contents |
- 3.5.1. Introduction (p. 282) | html | pdf |
- 3.5.2. Algorithms (pp. 282-284) | html | pdf |
- 3.5.2.1. Unrestrained cell (p. 282) | html | pdf |
- 3.5.2.2. Restrained cell (p. 282) | html | pdf |
- 3.5.2.2.1. Pawley method (p. 283) | html | pdf |
- 3.5.2.2.2. Le Bail method (pp. 283-284) | html | pdf |
- 3.5.3. Pitfalls in the extraction of accurate |Fhkl| values using the Pawley and Le Bail methods (pp. 284-285) | html | pdf |
- 3.5.3.1. Consequences of (exact or accidental) overlap (p. 284) | html | pdf |
- 3.5.3.2. Preferred-orientation effects (p. 284) | html | pdf |
- 3.5.3.3. Background-estimation effects (pp. 284-285) | html | pdf |
- 3.5.4. Applications and by-products (pp. 285-286) | html | pdf |
- 3.5.4.1. Supporting indexing and space-group determination (p. 286) | html | pdf |
- 3.5.4.2. Structure solution (p. 286) | html | pdf |
- 3.5.5. Conclusion (p. 286) | html | pdf |
- References
| html | pdf |
- Figures
- 3.6. Whole powder pattern modelling: microstructure determination from powder diffraction data (pp. 288-303) | html | pdf | chapter contents |
- 3.6.1. Introduction (pp. 288-289) | html | pdf |
- 3.6.2. Fourier methods (pp. 289-298) | html | pdf |
- 3.6.2.1. Definitions (p. 289) | html | pdf |
- 3.6.2.2. Peak profile and the convolution theorem (p. 289) | html | pdf |
- 3.6.2.3. The Warren–Averbach method and its variations (pp. 289-290) | html | pdf |
- 3.6.2.4. Beyond the Warren–Averbach method (p. 290) | html | pdf |
- 3.6.2.5. Whole powder pattern modelling (WPPM) (pp. 290-291) | html | pdf |
- 3.6.2.6. Broadening components (pp. 291-296) | html | pdf |
- 3.6.2.6.1. Instrument (p. 291) | html | pdf |
- 3.6.2.6.2. Source emission profile (p. 291) | html | pdf |
- 3.6.2.6.3. Optical elements (pp. 291-292) | html | pdf |
- 3.6.2.6.4. Domain size and shape (pp. 292-293) | html | pdf |
- 3.6.2.6.5. Strain broadening (lattice distortions) (p. 293) | html | pdf |
- 3.6.2.6.6. Dislocations (pp. 293-295) | html | pdf |
- 3.6.2.6.7. Twin and deformation faults (pp. 295-296) | html | pdf |
- 3.6.2.6.8. Antiphase domain boundaries (p. 296) | html | pdf |
- 3.6.2.7. Assembling the equations into a peak and modelling the data (pp. 296-298) | html | pdf |
- 3.6.2.7.1. Alternative approaches (pp. 297-298) | html | pdf |
- 3.6.3. Examples of WPPM analysis (pp. 298-301) | html | pdf |
- 3.6.3.1. Nanocrystalline ceria (pp. 298-299) | html | pdf |
- 3.6.3.2. Copper oxide (pp. 299-301) | html | pdf |
- Appendix 3.6.1. Functions for profile shapes (p. 301) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.6.1. Scherrer constants (Kw and Kβ) for various domain shapes (Langford & Wilson, 1978) (p. 288) | html | pdf |
- Table 3.6.2. Models for antiphase domain boundaries for the Cu3Au case (p. 296) | html | pdf |
- 3.7. Crystallographic databases and powder diffraction (pp. 304-324) | html | pdf | chapter contents |
- 3.7.1. Introduction (pp. 304-305) | html | pdf |
- 3.7.1.1. History of the PDF/ICDD (p. 304) | html | pdf |
- 3.7.1.2. Search/match (pp. 304-305) | html | pdf |
- 3.7.2. Powder Diffraction File (PDF) (pp. 305-313) | html | pdf |
- 3.7.2.1. Sources and formats of the PDF (p. 306) | html | pdf |
- 3.7.2.2. Quality marks in the PDF (pp. 306-307) | html | pdf |
- 3.7.2.3. Features of the PDF (pp. 307-309) | html | pdf |
- 3.7.2.4. Boolean logic in phase identification (pp. 309-313) | html | pdf |
- 3.7.2.4.1. Water-still deposit (pp. 309-310) | html | pdf |
- 3.7.2.4.2. Vanadium phosphate butane-oxidation catalyst (p. 310) | html | pdf |
- 3.7.2.4.3. Valve deposit from a piston aviation engine (p. 310) | html | pdf |
- 3.7.2.4.4. Isocracker sludge (pp. 310-311) | html | pdf |
- 3.7.2.4.5. Amoxicillin (pp. 311-312) | html | pdf |
- 3.7.2.4.6. Pseudoephedrine (p. 312) | html | pdf |
- 3.7.2.4.7. Commercial multivitamin: Centrum A to Zn (pp. 312-313) | html | pdf |
- 3.7.3. Cambridge Structural Database (CSD) (pp. 313-314) | html | pdf |
- 3.7.3.1. Mercury (p. 314) | html | pdf |
- 3.7.4. Inorganic Crystal Structure Database (ICSD) (pp. 314-316) | html | pdf |
- 3.7.4.1. General features of the ICSD (p. 315) | html | pdf |
- 3.7.4.2. Features particularly useful for powder crystallography (pp. 315-316) | html | pdf |
- 3.7.5. Pearson's Crystal Data (PCD/LPF) (with Pierre Villars and Karen Cenzual) (pp. 316-318) | html | pdf |
- 3.7.5.1. General information (p. 316) | html | pdf |
- 3.7.5.2. Evaluation procedure (p. 316) | html | pdf |
- 3.7.5.3. Standardized crystallographic data (pp. 316-317) | html | pdf |
- 3.7.5.4. Consequent prototype assignment (p. 317) | html | pdf |
- 3.7.5.5. Assigned atom coordinates (p. 317) | html | pdf |
- 3.7.5.6. External links (p. 317) | html | pdf |
- 3.7.5.7. Retrievable database fields (pp. 317-318) | html | pdf |
- 3.7.5.8. Particular software features (p. 318) | html | pdf |
- 3.7.6. Metals data file (CRYSTMET) (p. 318) | html | pdf |
- 3.7.7. Protein Data Bank (PDB) (pp. 318-319) | html | pdf |
- 3.7.7.1. Powder diffraction by proteins (pp. 318-319) | html | pdf |
- 3.7.7.2. Calculation of protein powder patterns (with Kenny Ståhl) (p. 319) | html | pdf |
- 3.7.8. Crystallography Open Database (COD) (with Saulius Gražulis) (pp. 319-321) | html | pdf |
- 3.7.9. Other internet databases (p. 321) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.7.1. Criteria for the assignment of quality marks to calculated patterns in the Powder Diffraction File (p. 308) | html | pdf |
- 3.8. Clustering and visualization of powder-diffraction data (pp. 325-343) | html | pdf | chapter contents |
- 3.8.1. Introduction (p. 325) | html | pdf |
- 3.8.2. Comparing 1D diffraction patterns (pp. 325-327) | html | pdf |
- 3.8.2.1. Spearman's rank order coefficient (p. 325) | html | pdf |
- 3.8.2.2. Pearson's r coefficient (p. 325) | html | pdf |
- 3.8.2.3. Combining the correlation coefficients (p. 325) | html | pdf |
- 3.8.2.4. Full-profile qualitative pattern matching (p. 326) | html | pdf |
- 3.8.2.5. Generation of the correlation and distance matrices (pp. 326-327) | html | pdf |
- 3.8.3. Cluster analysis (pp. 327-329) | html | pdf |
- 3.8.3.1. Dendrograms (p. 327) | html | pdf |
- 3.8.3.2. Estimating the number of clusters (pp. 327-328) | html | pdf |
- 3.8.3.3. Metric multidimensional scaling (pp. 328-329) | html | pdf |
- 3.8.3.4. Principal-component analysis (p. 329) | html | pdf |
- 3.8.3.5. Choice of clustering method (p. 329) | html | pdf |
- 3.8.3.6. The most representative sample (p. 329) | html | pdf |
- 3.8.3.7. Amorphous samples (p. 329) | html | pdf |
- 3.8.4. Data visualization (pp. 329-331) | html | pdf |
- 3.8.4.1. Primary data visualization (pp. 329-330) | html | pdf |
- 3.8.4.2. Secondary visualization using parallel coordinates, the grand tour and minimum spanning trees (pp. 330-331) | html | pdf |
- 3.8.4.2.1. Parallel-coordinates plots (pp. 330-331) | html | pdf |
- 3.8.4.2.2. The grand tour (p. 331) | html | pdf |
- 3.8.4.2.3. Powder data as a tree: the minimum spanning trees (p. 331) | html | pdf |
- 3.8.5. Further validating and visualizing clusters: silhouettes and fuzzy clustering (pp. 331-333) | html | pdf |
- 3.8.5.1. Silhouettes (pp. 331-333) | html | pdf |
- 3.8.5.2. Fuzzy clustering (p. 333) | html | pdf |
- 3.8.5.3. The PolySNAP program and DIFFRAC.EVA (p. 333) | html | pdf |
- 3.8.6. Examples (pp. 333-337) | html | pdf |
- 3.8.6.1. Aspirin data (pp. 333-335) | html | pdf |
- 3.8.6.1.1. Aspirin data with amorphous samples included (p. 335) | html | pdf |
- 3.8.6.2. Phase transitions in ammonium nitrate (pp. 335-337) | html | pdf |
- 3.8.7. Quantitative analysis with high-throughput PXRD data without Rietveld refinement (pp. 337-339) | html | pdf |
- 3.8.7.1. Example: inorganic mixtures (pp. 338-339) | html | pdf |
- 3.8.8. Using spectroscopic data (pp. 339-340) | html | pdf |
- 3.8.9. Combining data types: the INDSCAL method (pp. 340-342) | html | pdf |
- 3.8.9.1. An example combining PXRD and Raman data (p. 342) | html | pdf |
- 3.8.10. Quality control (p. 342) | html | pdf |
- 3.8.11. Computer software (p. 342) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.8.1. Six commonly used clustering methods (p. 327) | html | pdf |
- Table 3.8.2. Estimate of the number of clusters for the 23 sample data set for doxazosin (p. 328) | html | pdf |
- 3.9. Quantitative phase analysis (pp. 344-373) | html | pdf | chapter contents |
- 3.9.1. Introduction (p. 344) | html | pdf |
- 3.9.2. Phase analysis (pp. 344-345) | html | pdf |
- 3.9.3. QPA methodology (pp. 345-350) | html | pdf |
- 3.9.3.1. Absorption–diffraction method (pp. 345-346) | html | pdf |
- 3.9.3.2. Internal standard method (pp. 346-347) | html | pdf |
- 3.9.3.2.1. Selection of an internal standard (pp. 346-347) | html | pdf |
- 3.9.3.3. Reference intensity ratio methods (p. 347) | html | pdf |
- 3.9.3.4. Matrix-flushing method (pp. 347-348) | html | pdf |
- 3.9.3.5. Full-pattern fitting methods (p. 348) | html | pdf |
- 3.9.3.6. Rietveld-based QPA (pp. 348-350) | html | pdf |
- 3.9.4. Demonstration of methods (pp. 350-353) | html | pdf |
- 3.9.4.1. Absorption–diffraction method (p. 350) | html | pdf |
- 3.9.4.2. Internal standard method (pp. 350-351) | html | pdf |
- 3.9.4.3. Reference intensity ratio (p. 351) | html | pdf |
- 3.9.4.4. Matrix flushing (pp. 351-352) | html | pdf |
- 3.9.4.5. Rietveld-based methods (pp. 352-353) | html | pdf |
- 3.9.5. Alternative methods for determination of calibration constants (pp. 353-356) | html | pdf |
- 3.9.5.1. Standardless determination of the phase constant C (pp. 353-354) | html | pdf |
- 3.9.5.2. Demonstration of the Zevin approach (pp. 354-355) | html | pdf |
- 3.9.5.3. Experiment constant – a whole-sample approach (pp. 355-356) | html | pdf |
- 3.9.6. Quantification of phases with partial or no known crystal structures (pp. 356-360) | html | pdf |
- 3.9.6.1. Use of calibrated models (pp. 356-358) | html | pdf |
- 3.9.6.1.1. Generation of calibrated PONKCS models (p. 357) | html | pdf |
- 3.9.6.1.2. Application of the model (pp. 357-358) | html | pdf |
- 3.9.6.2. Modelling of structural disorder (pp. 358-359) | html | pdf |
- 3.9.6.3. Quantitative determination of amorphous material (pp. 360-361) | html | pdf |
- 3.9.7. QPA from in situ experimentation (pp. 361-362) | html | pdf |
- 3.9.7.1. Data analysis (pp. 361-362) | html | pdf |
- 3.9.8. QPA using neutron diffraction data (p. 362) | html | pdf |
- 3.9.9. QPA using energy-dispersive diffraction data (pp. 362-364) | html | pdf |
- 3.9.10. Improving accuracy (pp. 364-370) | html | pdf |
- 3.9.10.1. Standard deviations and error estimates (p. 364) | html | pdf |
- 3.9.10.2. Minimizing systematic errors (pp. 364-365) | html | pdf |
- 3.9.10.3. Minimizing sample-related errors (pp. 365-370) | html | pdf |
- 3.9.10.3.1. Crystallite-size issues (p. 365) | html | pdf |
- 3.9.10.3.2. Preferred orientation (pp. 365-366) | html | pdf |
- 3.9.10.3.3. Microabsorption (pp. 366-368) | html | pdf |
- 3.9.10.3.4. Whole-pattern-refinement effects (p. 368) | html | pdf |
- 3.9.10.3.5. Element analytical standards (pp. 368-369) | html | pdf |
- 3.9.10.3.6. Phase-specific methods: diffraction SRMs, round-robin samples and synthetic mixtures (pp. 369-370) | html | pdf |
- 3.9.11. Summary (p. 370) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.9.1. Weighed composition (weight fraction) of the eight mixtures comprising sample 1 in the IUCr CPD round robin on QPA (Madsen et al., 2001) (p. 350) | html | pdf |
- Table 3.9.2. Average values (n = 3) of net peak intensity derived using profile fitting for the strongest peaks of corundum (113), fluorite (022) and zincite (011) (p. 350) | html | pdf |
- Table 3.9.3. Phase calibration constants for corundum, fluorite and zincite determined using the Zevin (Zevin & Kimmel, 1995) and Knudsen (Knudsen, 1981) method (p. 355) | html | pdf |
- Table 3.9.4. Comparison of errors generated during the analysis of XRD data (Cu Kα radiation) from three sub-samples of sample 4 from the IUCr CPD round robin on QPA (Scarlett et al., 2002) (p. 364) | html | pdf |
- Table 3.9.5. Calculated values of μD (where μ is the linear absorption coefficient and D is the particle diameter) for Cu Kα X-rays for corundum, magnetite and zircon with a range of particle sizes (p. 367) | html | pdf |
- Table 3.9.6. Compositional analysis of the Dillinger Hütte iron-ore certified reference material SX 11–14, (i) derived from QPA results, taking into account the nominal stoichiometry of the phases (XRD) and (ii) the certified analyses (Cert) (Knorr & Bornefeld, 2013) (p. 369) | html | pdf |
- 3.10. Accuracy in Rietveld quantitative phase analysis with strictly monochromatic Mo and Cu radiations (pp. 374-384) | html | pdf | chapter contents |
- 3.10.1. Introduction (pp. 374-375) | html | pdf |
- 3.10.2. Compounds and series (pp. 375-376) | html | pdf |
- 3.10.2.1. Single phases (p. 375) | html | pdf |
- 3.10.2.2. Crystalline inorganic series (p. 375) | html | pdf |
- 3.10.2.3. Crystalline organic series (p. 375) | html | pdf |
- 3.10.2.4. Variable amorphous content series (pp. 375-376) | html | pdf |
- 3.10.3. Analytical techniques (pp. 376-377) | html | pdf |
- 3.10.3.1. Mo Kα1 laboratory X-ray powder diffraction (LXRPD) (p. 376) | html | pdf |
- 3.10.3.2. Cu Kα1 laboratory X-ray powder diffraction (LXRPD) (p. 376) | html | pdf |
- 3.10.3.3. Transmission synchrotron X-ray powder diffraction (SXRPD) (pp. 376-377) | html | pdf |
- 3.10.4. Powder-diffraction data analysis (p. 377) | html | pdf |
- 3.10.5. Crystalline single phases (pp. 377-379) | html | pdf |
- 3.10.6. Limits of detection and quantification (pp. 379-381) | html | pdf |
- 3.10.7. Increasing inorganic crystalline phase content series (p. 381) | html | pdf |
- 3.10.8. Increasing crystalline organic phase content series (pp. 381-382) | html | pdf |
- 3.10.9. Increasing amorphous content series within an inorganic crystalline phase matrix (pp. 382-383) | html | pdf |
- 3.10.10. Conclusions (pp. 383-384) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.10.1. Cambridge Structural Database (CSD)/Inorganic Crystal Structure Database (ICSD) reference codes for all phases used for Rietveld refinements in this work and the linear absorption coefficients for the wavelengths used (p. 375) | html | pdf |
- Table 3.10.2. Rietveld quantitative phase analyses for the crystalline inorganic mixtures measured with Cu Kα1 and Mo Kα1 radiations (p. 380) | html | pdf |
- Table 3.10.3. RQPA for the crystalline organic mixtures measured with Cu Kα1 and Mo Kα1 radiations (p. 382) | html | pdf |
- Table 3.10.4. Rietveld quantitative phase analyses of the CQZ_xGl mixture, where quartz (Q) is the internal standard, to derive amorphous content (am), obtained from SXRPD, Mo Kα1 and Cu Kα1 patterns (p. 382) | html | pdf |
- Structure determination
- 4.1. An overview of currently used structure determination methods for powder diffraction data (pp. 386-394) | html | pdf | chapter contents |
- 4.1.1. Introduction (p. 386) | html | pdf |
- 4.1.2. Methods used in SDPD (pp. 386-387) | html | pdf |
- 4.1.3. Conventional direct methods of structure determination (pp. 387-388) | html | pdf |
- 4.1.4. Modified direct methods of structure determination (p. 388) | html | pdf |
- 4.1.5. The direct-methods sum function (p. 388) | html | pdf |
- 4.1.6. The Patterson function (p. 388) | html | pdf |
- 4.1.7. Resonant (anomalous) scattering (pp. 388-389) | html | pdf |
- 4.1.8. Isomorphous replacement (p. 389) | html | pdf |
- 4.1.9. Maximum-entropy methods (p. 389) | html | pdf |
- 4.1.10. Charge flipping (pp. 389-390) | html | pdf |
- 4.1.11. Molecular envelopes (p. 390) | html | pdf |
- 4.1.12. Model building (p. 390) | html | pdf |
- 4.1.13. Molecular replacement (p. 390) | html | pdf |
- 4.1.14. Global optimization (pp. 390-391) | html | pdf |
- 4.1.15. Maximum-likelihood methods (p. 391) | html | pdf |
- 4.1.16. Local minimization (p. 391) | html | pdf |
- 4.1.17. Active use of prior information for particular structural classes (pp. 391-392) | html | pdf |
- 4.1.18. Combined figures of merit (p. 392) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.1.1. Some representative examples of structures solved using the methods described in this chapter (p. 387) | html | pdf |
- 4.2. Solving crystal structures using reciprocal-space methods (pp. 395-413) | html | pdf | chapter contents |
- 4.2.1. Introduction (p. 395) | html | pdf |
- 4.2.2. Intensity extraction for RS methods (p. 395) | html | pdf |
- 4.2.3. Direct methods (pp. 395-399) | html | pdf |
- 4.2.3.1. Normalized structure factors (pp. 396-397) | html | pdf |
- 4.2.3.2. Structure invariants (p. 397) | html | pdf |
- 4.2.3.3. Triplet invariants (p. 397) | html | pdf |
- 4.2.3.4. How direct methods work (pp. 397-399) | html | pdf |
- 4.2.4. Improving data normalization (pp. 399-400) | html | pdf |
- 4.2.4.1. Pseudotranslational symmetry (p. 399) | html | pdf |
- 4.2.4.2. Preferred orientation (pp. 399-400) | html | pdf |
- 4.2.4.3. Systematic decomposition (p. 400) | html | pdf |
- 4.2.5. Patterson methods (pp. 400-401) | html | pdf |
- 4.2.5.1. The use of the Patterson function for estimating integrated intensities (p. 401) | html | pdf |
- 4.2.6. Charge flipping (pp. 401-403) | html | pdf |
- 4.2.7. Maximum-entropy methods (pp. 403-404) | html | pdf |
- 4.2.8. Optimization of the structure model (pp. 404-406) | html | pdf |
- 4.2.8.1. Fourier recycling (FR) (p. 404) | html | pdf |
- 4.2.8.2. Weighted least-squares (WLSQ) refinement (pp. 404-405) | html | pdf |
- 4.2.8.3. Resolution bias modification (RBM) (pp. 405-406) | html | pdf |
- 4.2.9. Software packages for powder solution (pp. 406-410) | html | pdf |
- 4.2.9.1. Example of structure solution by XLENS (p. 406) | html | pdf |
- 4.2.9.2. Example of structure solution by SUPERFLIP (p. 407) | html | pdf |
- 4.2.9.3. The input file for a default run of EXPO (p. 407) | html | pdf |
- 4.2.9.4. An example of model optimization by EXPO for an inorganic compound (pp. 407-408) | html | pdf |
- 4.2.9.5. Example of model optimization by EXPO for an organic compound (pp. 408-410) | html | pdf |
- 4.2.9.6. The ALLTRIALS tool in EXPO: exploring all the phase sets (p. 410) | html | pdf |
- 4.2.9.7. Graphical tools in EXPO (p. 410) | html | pdf |
- 4.2.10. Conclusions (p. 410) | html | pdf |
- References
| html | pdf |
- Figures
- 4.3. Real-space methods for structure solution from powder-diffraction data: application to molecular structures (pp. 414-432) | html | pdf | chapter contents |
- 4.3.1. Introduction (pp. 414-416) | html | pdf |
- 4.3.2. Real-space structure determination: a global-optimization extension of the Rietveld method (p. 416) | html | pdf |
- 4.3.3. Optimizing the process of real-space structure determination from powder-diffraction data (pp. 416-418) | html | pdf |
- 4.3.3.1. Introduction (pp. 416-417) | html | pdf |
- 4.3.3.2. Parameterization of the molecular structure (pp. 417-418) | html | pdf |
- 4.3.4. The nature and magnitude of the global-optimization challenge (pp. 418-424) | html | pdf |
- 4.3.4.1. Interpretation of the least-squares cost function (pp. 419-421) | html | pdf |
- 4.3.4.2. The chi-squared hypersurface (pp. 421-424) | html | pdf |
- 4.3.5. Global-optimization algorithms (pp. 424-430) | html | pdf |
- 4.3.5.1. Stochastic search algorithms (pp. 425-429) | html | pdf |
- 4.3.5.1.1. Introduction (p. 426) | html | pdf |
- 4.3.5.1.2. Monte Carlo methods (p. 426) | html | pdf |
- 4.3.5.1.3. Simulated-annealing methods (pp. 426-427) | html | pdf |
- 4.3.5.1.4. Parallel tempering (pp. 427-428) | html | pdf |
- 4.3.5.1.5. Genetic algorithms (pp. 428-429) | html | pdf |
- 4.3.5.1.6. Differential evolution (p. 429) | html | pdf |
- 4.3.5.2. Deterministic search algorithms (pp. 429-430) | html | pdf |
- 4.3.5.2.1. Introduction (p. 429) | html | pdf |
- 4.3.5.2.2. The hybrid Monte Carlo algorithm (pp. 429-430) | html | pdf |
- 4.3.6. Using maximum-likelihood techniques to tackle incomplete structural models (pp. 430-431) | html | pdf |
- 4.3.6.1. Introduction (p. 430) | html | pdf |
- 4.3.6.2. Working with incomplete structural models: maximum-likelihood methods (pp. 430-431) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.3.1. The symbolic representation of the initial bonds, angles and dihedral angles described in the Z-matrix of hydrochlorothiazide (p. 418) | html | pdf |
- Table 4.3.2. Z-matrix for hydrochlorothiazide (p. 418) | html | pdf |
- Table 4.3.3. Estimated minimum d-spacing range extent (in Å) for structure solution for different complexities of molecular structures using low (5 × 10−3), medium (2 × 10−3) and high (2 × 10−4) resolution instrumentation (p. 421) | html | pdf |
- 4.4. The use of supplementary information to solve crystal structures from powder diffraction (pp. 433-441) | html | pdf | chapter contents |
- 4.4.1. General remarks (p. 433) | html | pdf |
- 4.4.2. Molecular models (pp. 433-439) | html | pdf |
- 4.4.2.1. Molecular volume (p. 434) | html | pdf |
- 4.4.2.2. Fragment model selection: bond length and angles (pp. 434-435) | html | pdf |
- 4.4.2.3. Flexible ring conformations (pp. 435-436) | html | pdf |
- 4.4.2.4. Torsion-angle constraints (pp. 436-438) | html | pdf |
- 4.4.2.4.1. Crystal-structure-derived information (pp. 436-437) | html | pdf |
- 4.4.2.4.2. Solid-state-NMR-derived information (pp. 437-438) | html | pdf |
- 4.4.2.5. Intermolecular distance constraints (p. 438) | html | pdf |
- 4.4.2.6. H-atom location in structures solved from X-ray powder data (pp. 438-439) | html | pdf |
- 4.4.2.7. Crystal-structure prediction and crystal-structure solution (p. 439) | html | pdf |
- 4.4.3. Concluding remarks (p. 439) | html | pdf |
- 4.4.3.1. Test data for SDPD (p. 439) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.4.1. Comparison of molecular volumes for tetradecane-1,14-diol and carbamazepine from three different sources (p. 434) | html | pdf |
- Table 4.4.2. Allowed ranges for the flexible torsion angles (τ1–13) identified in the verapamil cation using Mogul (from Florence et al., 2009) (p. 437) | html | pdf |
- 4.5. Solving and refining inorganic structures (pp. 442-451) | html | pdf | chapter contents |
- 4.5.1. The molecular/non-molecular and the organic/inorganic boundaries (p. 442) | html | pdf |
- 4.5.2. Modelling of non-molecular compounds (p. 442) | html | pdf |
- 4.5.2.1. Principles (p. 442) | html | pdf |
- 4.5.2.2. Building units (pp. 442-443) | html | pdf |
- 4.5.2.3. Special positions and the sharing of atoms between building units (pp. 443-444) | html | pdf |
- 4.5.2.4. Is there a need for precise unit-cell contents? (p. 444) | html | pdf |
- 4.5.2.5. Building units and the convergence of the DSM algorithm (p. 444) | html | pdf |
- 4.5.2.6. Random versus non-random DSM algorithms (pp. 444-445) | html | pdf |
- 4.5.2.7. The choice of the cost function in DSM algorithms (p. 445) | html | pdf |
- 4.5.3. Solving, refining and completing inorganic structures (pp. 445-448) | html | pdf |
- 4.5.3.1. A general problem: poor quality powder data (p. 445) | html | pdf |
- 4.5.3.2. Indexing of multiphase samples (p. 445) | html | pdf |
- 4.5.3.3. X-rays versus neutrons (pp. 445-446) | html | pdf |
- 4.5.3.4. Chemical and positional disorder (pp. 446-447) | html | pdf |
- 4.5.3.5. Structure validation – theoretical issues (pp. 447-448) | html | pdf |
- 4.5.4. Examples (pp. 448-450) | html | pdf |
- 4.5.4.1. Polyhedral compounds (pp. 448-449) | html | pdf |
- 4.5.4.2. Hybrid compounds (p. 449) | html | pdf |
- 4.5.4.3. Close-packed compounds (p. 450) | html | pdf |
- References
| html | pdf |
- Figures
- 4.6. Zeolites (pp. 452-464) | html | pdf | chapter contents |
- 4.6.1. Introduction (p. 452) | html | pdf |
- 4.6.2. Framework structure determination (pp. 452-458) | html | pdf |
- 4.6.2.1. Preliminary steps (p. 454) | html | pdf |
- 4.6.2.2. Model building (pp. 454-455) | html | pdf |
- 4.6.2.3. Focus (pp. 455-456) | html | pdf |
- 4.6.2.4. Direct methods (p. 456) | html | pdf |
- 4.6.2.5. Charge flipping (pp. 456-457) | html | pdf |
- 4.6.2.6. Using additional information (pp. 457-458) | html | pdf |
- 4.6.3. Structure refinement (pp. 458-462) | html | pdf |
- 4.6.3.1. Space-group ambiguity (p. 458) | html | pdf |
- 4.6.3.2. Geometric restraints (p. 458) | html | pdf |
- 4.6.3.3. Disorder (pp. 458-459) | html | pdf |
- 4.6.3.4. Locating non-framework species (pp. 459-460) | html | pdf |
- 4.6.3.5. Rietveld refinement of SSZ-74 (pp. 460-462) | html | pdf |
- 4.6.3.6. Locating isomorphously substituted T atoms (p. 462) | html | pdf |
- 4.6.4. Conclusions (pp. 462-463) | html | pdf |
- References
| html | pdf |
- Figures
- 4.7. Rietveld refinement (pp. 465-472) | html | pdf | chapter contents |
- 4.7.1. History (pp. 465-466) | html | pdf |
- 4.7.2. Rietveld versus single-crystal refinements (p. 466) | html | pdf |
- 4.7.3. Multiphase and multiple data set fitting (pp. 466-467) | html | pdf |
- 4.7.4. The mechanism of Rietveld fitting (p. 467) | html | pdf |
- 4.7.5. Types of profile functions (p. 467) | html | pdf |
- 4.7.6. Observed structure-factor estimates (pp. 467-468) | html | pdf |
- 4.7.7. Estimating observed structure factors without a structure (p. 468) | html | pdf |
- 4.7.8. Agreement factors (pp. 468-469) | html | pdf |
- 4.7.9. Restraints and constraints in Rietveld refinement (pp. 469-470) | html | pdf |
- 4.7.10. The order in which to introduce parameters in a fit (pp. 470-471) | html | pdf |
- 4.7.11. Examples (p. 471) | html | pdf |
- 4.7.12. Conclusions (p. 471) | html | pdf |
- References
| html | pdf |
- 4.8. Application of the maximum-entropy method to powder-diffraction data (pp. 473-488) | html | pdf | chapter contents |
- 4.8.1. Introduction (pp. 473-474) | html | pdf |
- 4.8.2. The principle of maximum entropy (pp. 474-475) | html | pdf |
- 4.8.3. Prior densities in MEM calculations (pp. 475-476) | html | pdf |
- 4.8.4. Crystallographic MEM equations (p. 476) | html | pdf |
- 4.8.5. MEM algorithms (pp. 476-477) | html | pdf |
- 4.8.5.1. Exponential modelling algorithm (Gull & Daniell, 1978; Collins, 1982; Collins & Mahar, 1983) (pp. 476-477) | html | pdf |
- 4.8.5.2. Sakata–Sato algorithm (Sakata & Sato, 1990; Sakata et al., 1990, 1992, 1993; Kumazawa et al., 1995) (p. 477) | html | pdf |
- 4.8.5.3. Cambridge algorithm (Bryan & Skilling, 1980, 1986; Burch et al., 1983; Skilling & Bryan, 1984; Gull & Skilling, 1987, 1999) (p. 477) | html | pdf |
- 4.8.5.4. Two-channel MaxEnt method (Papoular & Gillon, 1990; Zheludev et al., 1995; Papoular et al., 1996) (p. 477) | html | pdf |
- 4.8.5.5. Valence-only MaxEnt method (Roversi et al., 1998) (p. 477) | html | pdf |
- 4.8.6. Constraints in the MEM based on the measured intensities from powder-diffraction data (pp. 477-480) | html | pdf |
- 4.8.6.1. F and G constraints (pp. 478-479) | html | pdf |
- 4.8.6.2. Constraints using `partly phased' reflections for anomalous-scattering X-ray powder diffraction (pp. 479-480) | html | pdf |
- 4.8.6.3. Prior-derived F constraints (p. 480) | html | pdf |
- 4.8.6.4. Observed structure factors (p. 480) | html | pdf |
- 4.8.7. Analysis of the electron-density distribution from powder-diffraction data (pp. 480-485) | html | pdf |
- 4.8.7.1. Types of MEM-reconstructed electron-density distribution (pp. 480-482) | html | pdf |
- 4.8.7.2. MEM-based improvement of the structure model from charge flipping (p. 482) | html | pdf |
- 4.8.7.3. Combination of MEM and Rietveld refinement (REMEDY cycle) (pp. 482-483) | html | pdf |
- 4.8.7.4. MEM-assisted structure solution by charge flipping (pp. 483-484) | html | pdf |
- 4.8.7.5. Disorder and anharmonic atomic displacements (p. 484) | html | pdf |
- 4.8.7.6. Accurate electron densities (pp. 484-485) | html | pdf |
- 4.8.8. Extensions of the MEM (pp. 485-486) | html | pdf |
- 4.8.8.1. Distribution of normalized residuals of the structure factors (p. 485) | html | pdf |
- 4.8.8.2. Stopping criterion (pp. 485-486) | html | pdf |
- 4.8.8.3. Generalization of MaxEnt algorithm to n dimensions (n > 3) and application to powder-diffraction data of aperiodic structures (p. 486) | html | pdf |
- References
| html | pdf |
- Figures
- 4.9. Structure validation (pp. 489-514) | html | pdf | chapter contents |
- 4.9.1. Introduction (p. 489) | html | pdf |
- 4.9.2. Statistical measures (with contributions from B. H. Toby) (pp. 489-490) | html | pdf |
- 4.9.3. Graphical measures (with contributions from B. H. Toby and J. K. Stalick) (pp. 490-496) | html | pdf |
- 4.9.4. Chemical reasonableness (pp. 496-508) | html | pdf |
- 4.9.4.1. Organic compounds (pp. 496-503) | html | pdf |
- 4.9.4.1.1. Calcium tartrate tetrahydrate (pp. 497-500) | html | pdf |
- 4.9.4.1.2. Guaifenesin (pp. 500-502) | html | pdf |
- 4.9.4.1.3. Cobalt(II) acetate tetrahydrate, Co(C2H3O2)2(H2O)4 (pp. 502-503) | html | pdf |
- 4.9.4.2. Inorganic compounds (pp. 503-508) | html | pdf |
- 4.9.4.2.1. The bond-valence method (p. 503) | html | pdf |
- 4.9.4.2.2. Hexaaquairon(II) tetrafluoroborate, [Fe(H2O)6](BF4)2 (pp. 503-505) | html | pdf |
- 4.9.4.2.3. (Ba1.5Sr0.5)TiO4 (pp. 505-506) | html | pdf |
- 4.9.4.2.4. (Ba1.25Sr0.75)TiO4 (pp. 506-507) | html | pdf |
- 4.9.4.2.5. Mullite, Al4.85Si1.18O9.77 (p. 507) | html | pdf |
- 4.9.4.2.6. 6H perovskite Ba3CaSb2O9 (pp. 507-508) | html | pdf |
- 4.9.4.2.7. Quartz (p. 508) | html | pdf |
- 4.9.5. Working by analogy (p. 508) | html | pdf |
- 4.9.6. Structure validation in general (pp. 508-509) | html | pdf |
- 4.9.7. CheckCIF/PLATON (pp. 509-512) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.9.1. Average bond distances in a tartrate anion (p. 497) | html | pdf |
- Table 4.9.2. Average bond angles in a tartrate anion (p. 497) | html | pdf |
- Table 4.9.3. Bond distances (Å) and angles (°) in cobalt(II) acetate tetrahydrate (Kaduk & Partenheimer, 1997) (p. 503) | html | pdf |
- Table 4.9.4. Root-mean-square density-weighted displacements (Å) of atoms in various refinements of cobalt(II) acetate tetrahydrate (Kaduk & Partenheimer, 1997) (p. 503) | html | pdf |
- Table 4.9.5. Displacement coefficients (Å2) from various refinements of cobalt(II) acetate tetrahydrate (p. 504) | html | pdf |
- Table 4.9.6. Average bond distances and angles from 26 experimental determinations of α-quartz compared with average values from 20 determinations in the ICSD (p. 508) | html | pdf |
- Table 4.9.7. R.m.s. differences Δ (Å) between the non-H atoms in experimental and DFT-optimized crystal structures of the citrate group in group-1 citrate salts (p. 509) | html | pdf |
- 4.10. Use of CIF for powder diffraction data (pp. 515-521) | html | pdf | chapter contents |
- 4.10.1. Background (p. 515) | html | pdf |
- 4.10.2. A brief introduction to CIF (pp. 515-516) | html | pdf |
- 4.10.3. CIF usage for powder diffraction (pp. 516-517) | html | pdf |
- 4.10.4. Creation of pdCIF data files (pp. 517-518) | html | pdf |
- 4.10.5. Creating readers for pdCIF data files (p. 518) | html | pdf |
- 4.10.5.1. Ordinate (p. 518) | html | pdf |
- 4.10.5.2. Observed intensities (p. 518) | html | pdf |
- 4.10.5.3. Background intensities (p. 518) | html | pdf |
- 4.10.5.4. Computed intensities (p. 518) | html | pdf |
- 4.10.6. CIF software for powder diffraction (pp. 518-521) | html | pdf |
- 4.10.6.1. enCIFer (p. 519) | html | pdf |
- 4.10.6.2. The IUCr publCIF application (p. 519) | html | pdf |
- 4.10.6.3. The IUCr checkCIF web application (p. 519) | html | pdf |
- 4.10.6.4. The IUCr pdCIFplot application (pp. 519-520) | html | pdf |
- 4.10.6.5. International Centre for Diffraction Data (ICDD) Genie application (p. 520) | html | pdf |
- 4.10.6.6. pdCIF creation in GSAS-II (pp. 520-521) | html | pdf |
- 4.10.7. Conclusions (p. 521) | html | pdf |
- References
| html | pdf |
- Figures
- Defects, texture and microstructure
- 5.1. Domain size and domain-size distributions (pp. 524-537) | html | pdf | chapter contents |
- 5.1.1. Introduction (p. 524) | html | pdf |
- 5.1.2. The Scherrer formula and integral-breadth methods (p. 524) | html | pdf |
- 5.1.3. Fourier methods (p. 526) | html | pdf |
- 5.1.4. The peak profile and the common volume function (`ghost') (pp. 526-528) | html | pdf |
- 5.1.5. Common volume function for simple shapes (pp. 528-530) | html | pdf |
- 5.1.6. Calculation of the intensity profile for simple shapes (pp. 530-531) | html | pdf |
- 5.1.7. Meaning of the size Fourier coefficients: mean size and column-length distribution (p. 531) | html | pdf |
- 5.1.8. Extension of the Fourier approach to a size distribution (pp. 531-533) | html | pdf |
- 5.1.9. Analytical distributions (p. 533) | html | pdf |
- 5.1.10. Histogram (arbitrary) distributions (pp. 533-534) | html | pdf |
- 5.1.11. Example (pp. 534-536) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.1.1. Coefficients for the calculation of the common volume function for a sphere, cube, tetrahedron and octahedron (p. 529) | html | pdf |
- 5.2. Stress and strain (pp. 538-554) | html | pdf | chapter contents |
- 5.2.1. The importance of determining stress and the diffraction method (p. 538) | html | pdf |
- 5.2.2. Strain and stress in single crystals, elastic constants and transformations (p. 538) | html | pdf |
- 5.2.3. Strain and stress in polycrystalline samples (pp. 540-542) | html | pdf |
- 5.2.3.1. Types of strains and stresses, and the strain/stress orientation distribution function (pp. 540-541) | html | pdf |
- 5.2.3.2. The mean and variance of the observable strain, the peak shift and broadening (pp. 541-542) | html | pdf |
- 5.2.4. Determining the strain/stress by diffraction (pp. 542-543) | html | pdf |
- 5.2.4.1. Determining the macrostrain/stress (pp. 542-543) | html | pdf |
- 5.2.4.2. Determining the microstrain (p. 543) | html | pdf |
- 5.2.5. Macrostrain/stress in isotropic samples: classical approximations (pp. 543-546) | html | pdf |
- 5.2.5.1. The Voigt model (p. 544) | html | pdf |
- 5.2.5.2. The Reuss model (pp. 544-545) | html | pdf |
- 5.2.5.3. The Hill average (p. 545) | html | pdf |
- 5.2.5.4. The Kroner model (p. 545) | html | pdf |
- 5.2.5.5. The `sin2Ψ' method (pp. 545-546) | html | pdf |
- 5.2.5.6. Determining the single-crystal elastic constants (p. 546) | html | pdf |
- 5.2.6. The hydrostatic state in isotropic polycrystals (pp. 546-547) | html | pdf |
- 5.2.7. Calculating the macroscopic strain/stress using spherical harmonics (pp. 547-552) | html | pdf |
- 5.2.7.1. Strain expansion in generalized spherical harmonics: the Popa and Balzar approach (pp. 547-548) | html | pdf |
- 5.2.7.2. The selection rules for all Laue classes (p. 548) | html | pdf |
- 5.2.7.3. Generalized spherical harmonics of real type, and the WSODF index (pp. 548-549) | html | pdf |
- 5.2.7.4. Determining the macrostrain/stress state of the sample (pp. 549-550) | html | pdf |
- 5.2.7.5. Simplified (`short') harmonics representation of the peak shift, and the `mixed' representation (p. 550) | html | pdf |
- 5.2.7.6. Implementation in Rietveld codes (pp. 550-551) | html | pdf |
- 5.2.7.7. An application: determining the averaged macroscopic strain and stress tensors in a rolled uranium plate from time-of-flight neutron diffraction data (pp. 551-552) | html | pdf |
- 5.2.7.8. Limitations of the spherical-harmonics approach and possible further developments (p. 552) | html | pdf |
- 5.2.8. The spherical-harmonics approach to strain broadening (pp. 552-553) | html | pdf |
- 5.2.8.1. Ignoring the macrostrain variance (p. 552) | html | pdf |
- 5.2.8.2. The double-dependent anisotropic strain breadth (DDASB) (pp. 552-553) | html | pdf |
- 5.2.8.3. The `classical' limit of the DDASB (p. 553) | html | pdf |
- References
| html | pdf |
- Tables
- Table 5.2.1. The matrix C for all Laue groups represented by specific constraints (p. 540) | html | pdf |
- Table 5.2.2. Quadratic and quartic forms for symmetries higher than triclinic (p. 545) | html | pdf |
- Table 5.2.3. Assignment of functions to the coefficients (p. 549) | html | pdf |
- Table 5.2.4. The real generalized spherical harmonics (p. 549) | html | pdf |
- Table 5.2.5. The monomials jμl(a1, a2, a3) for l = 2, 4, 6 (p. 550) | html | pdf |
- Table 5.2.6. The complete set of polynomials Jμl for l = 2, 4, 6 for all Laue groups (p. 551) | html | pdf |
- 5.3. Quantitative texture analysis and combined analysis (pp. 555-580) | html | pdf | chapter contents |
- 5.3.1. Introduction (p. 555) | html | pdf |
- 5.3.2. Crystallographic quantitative texture analysis (QTA) (pp. 555-567) | html | pdf |
- 5.3.2.1. Orientation distribution (OD) (pp. 555-558) | html | pdf |
- 5.3.2.1.1. The orientation space H (pp. 555-556) | html | pdf |
- 5.3.2.1.2. The orientation distribution (OD) or orientation distribution function (ODF) (p. 556) | html | pdf |
- 5.3.2.1.3. Pole figures (pp. 556-558) | html | pdf |
- 5.3.2.1.3.1. Mathematical expression (pp. 556-557) | html | pdf |
- 5.3.2.1.3.2. Diffraction pole figures and orientation of planes (p. 557) | html | pdf |
- 5.3.2.1.3.3. From diffraction measurements to pole figures and ODs (p. 557) | html | pdf |
- 5.3.2.1.3.4. Pole-figure normalization (pp. 557-558) | html | pdf |
- 5.3.2.2. The fundamental equation of quantitative texture analysis (pp. 558-559) | html | pdf |
- 5.3.2.3. Resolution of the fundamental equation (pp. 559-562) | html | pdf |
- 5.3.2.3.1. Generalized spherical-harmonics expansion (pp. 559-560) | html | pdf |
- 5.3.2.3.2. Vector method (p. 560) | html | pdf |
- 5.3.2.3.3. WIMV method (p. 560) | html | pdf |
- 5.3.2.3.4. Arbitrarily defined cells (ADC) method (p. 560) | html | pdf |
- 5.3.2.3.5. Entropy-maximization method (p. 560) | html | pdf |
- 5.3.2.3.6. EWIMV method (p. 560) | html | pdf |
- 5.3.2.3.7. Component method (pp. 560-561) | html | pdf |
- 5.3.2.3.8. Positivity and exponential harmonics (pp. 561-562) | html | pdf |
- 5.3.2.3.9. Radon transform and Fourier analysis (p. 562) | html | pdf |
- 5.3.2.4. Inverse pole figures (pp. 562-563) | html | pdf |
- 5.3.2.5. OD refinement reliability estimators (p. 563) | html | pdf |
- 5.3.2.6. Texture-strength factors (pp. 563-564) | html | pdf |
- 5.3.2.6.1. Texture index (p. 564) | html | pdf |
- 5.3.2.6.1.1. OD texture index (p. 564) | html | pdf |
- 5.3.2.6.1.2. Pole-figure texture index (p. 564) | html | pdf |
- 5.3.2.6.2. Texture entropy (p. 564) | html | pdf |
- 5.3.2.6.3. Pole-figure and ODF strengths (p. 564) | html | pdf |
- 5.3.2.6.4. Correlation between F2 and S (p. 564) | html | pdf |
- 5.3.2.7. Texture types (pp. 564-566) | html | pdf |
- 5.3.2.7.1. Random texture (pp. 564-565) | html | pdf |
- 5.3.2.7.2. Planar textures (p. 565) | html | pdf |
- 5.3.2.7.3. Fibre textures (p. 565) | html | pdf |
- 5.3.2.7.4. Three-dimensional textures (pp. 565-566) | html | pdf |
- 5.3.2.7.5. Typical OD components (p. 566) | html | pdf |
- 5.3.2.8. Reciprocal-space mapping (pp. 566-567) | html | pdf |
- 5.3.3. Magnetic quantitative texture analysis (MQTA) (pp. 567-569) | html | pdf |
- 5.3.3.1. Magnetization curves and magnetic moment distributions (p. 567) | html | pdf |
- 5.3.3.2. Magnetic pole figures and magnetic ODs (pp. 567-568) | html | pdf |
- 5.3.3.2.1. Magnetic pole figures and ODs (p. 567) | html | pdf |
- 5.3.3.2.2. Fundamental equations of MQTA (pp. 567-568) | html | pdf |
- 5.3.3.3. An example (pp. 568-569) | html | pdf |
- 5.3.4. Modelling of preferred orientation in the Rietveld method (pp. 569-571) | html | pdf |
- 5.3.4.1. Rietveld and March approaches (p. 569) | html | pdf |
- 5.3.4.2. March–Dollase approach (pp. 569-570) | html | pdf |
- 5.3.4.3. Modified March–Dollase models (p. 570) | html | pdf |
- 5.3.4.4. Donnet–Jouanneaux function (p. 570) | html | pdf |
- 5.3.4.5. Modelling by spherical harmonics (and exponential) (p. 570) | html | pdf |
- 5.3.4.6. The use of standard functions (or texture components) (p. 570) | html | pdf |
- 5.3.4.7. Remarks (pp. 570-571) | html | pdf |
- 5.3.5. Combined analysis: structure, texture, microstructure, stress, phase, layering and reflectivity analyses in a single approach (pp. 571-578) | html | pdf |
- 5.3.5.1. Problems (pp. 571-572) | html | pdf |
- 5.3.5.2. Intensity of a pattern and general scheme (p. 572) | html | pdf |
- 5.3.5.3. Minimum experimental requirements (p. 572) | html | pdf |
- 5.3.5.4. Theoretical implementation (pp. 572-577) | html | pdf |
- 5.3.5.4.1. Instrumental broadening calibration (pp. 572-573) | html | pdf |
- 5.3.5.4.2. Peak-displacement errors (p. 573) | html | pdf |
- 5.3.5.4.3. Background fitting (pp. 573-574) | html | pdf |
- 5.3.5.4.4. Reflection intensities (pp. 574-575) | html | pdf |
- 5.3.5.4.5. Line profiles and sample broadening (p. 575) | html | pdf |
- 5.3.5.4.6. Texture computation (p. 575) | html | pdf |
- 5.3.5.4.7. Residual strains/stresses and evaluation of macroscopic tensors (pp. 575-576) | html | pdf |
- 5.3.5.4.8. Absorption and layers (pp. 576-577) | html | pdf |
- 5.3.5.5. Implementation (p. 577) | html | pdf |
- 5.3.5.6. Examination of a solution (pp. 577-578) | html | pdf |
- 5.3.6. Conclusions (p. 578) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.3.1. Preferred-orientation (PO) modelling methods implemented in some Rietveld packages, and their capability to perform a full texture analysis (QTA) with determination of the OD from several patterns (p. 571) | html | pdf |
- Table 5.3.2. Results obtained from combined analysis on an AlN/Pt/TiOx/Al2O3/Ni(Co–Cr–Al–Y) stack (p. 577) | html | pdf |
- 5.4. Thin films and multilayers (pp. 581-600) | html | pdf | chapter contents |
- 5.4.1. Introduction (p. 581) | html | pdf |
- 5.4.2. Effects of absorption (p. 581) | html | pdf |
- 5.4.2.1. Absorption factor (pp. 581-582) | html | pdf |
- 5.4.2.2. Chemical phase identification (pp. 582-583) | html | pdf |
- 5.4.2.3. Determination and interpretation of the product μt (pp. 583-584) | html | pdf |
- 5.4.2.4. Phase inhomogeneities (p. 584) | html | pdf |
- 5.4.3. Grazing-incidence configurations (pp. 584-590) | html | pdf |
- 5.4.3.1. Grazing-incidence X-ray diffraction (GIXRD) (pp. 584-587) | html | pdf |
- 5.4.3.2. Penetration depth and information depth (p. 587) | html | pdf |
- 5.4.3.3. Depth-dependent properties (pp. 587-588) | html | pdf |
- 5.4.3.4. Index of refraction for X-rays (p. 588) | html | pdf |
- 5.4.3.5. Total external reflection and critical angle (pp. 588-590) | html | pdf |
- 5.4.3.6. Use of synchrotron radiation (p. 590) | html | pdf |
- 5.4.4. Thin-film textures and their depth dependence (pp. 590-593) | html | pdf |
- 5.4.4.1. Texture factors (p. 590) | html | pdf |
- 5.4.4.2. Pole-figure scans and analysis (pp. 590-592) | html | pdf |
- 5.4.4.3. Texture gradients (pp. 592-593) | html | pdf |
- 5.4.5. Stress and strain analysis (pp. 593-594) | html | pdf |
- 5.4.6. X-ray reflectivity (XRR) (pp. 594-597) | html | pdf |
- 5.4.6.1. Reflectivity from a substrate (pp. 594-595) | html | pdf |
- 5.4.6.2. Reflectivity of a single layer (pp. 595-596) | html | pdf |
- 5.4.6.3. Reflectivity of multilayers and superlattices (pp. 596-597) | html | pdf |
- 5.4.7. Grazing-incidence X-ray scattering (GIXS) (pp. 597-598) | html | pdf |
- 5.4.8. Conclusions and perspective (p. 598) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.4.1. Mass densities ρ, according to Weast (1986), electron densities ρe and critical angles αc of some oxides used as optical coatings (p. 588) | html | pdf |
- 5.5. Multigrain crystallography and three-dimensional grain mapping (pp. 601-616) | html | pdf | chapter contents |
- 5.5.1. List of symbols (p. 601) | html | pdf |
- 5.5.2. Introduction (pp. 601-602) | html | pdf |
- 5.5.3. Experimental setup (pp. 602-603) | html | pdf |
- 5.5.4. Diffraction geometry (pp. 603-605) | html | pdf |
- 5.5.4.1. The laboratory and rotated coordinate systems (p. 603) | html | pdf |
- 5.5.4.2. Detector coordinate systems (pp. 603-604) | html | pdf |
- 5.5.4.3. Diffraction (p. 604) | html | pdf |
- 5.5.4.4. Forward projection, no detector tilt (pp. 604-605) | html | pdf |
- 5.5.4.5. Forward projection with detector tilt and non-centred sample (p. 605) | html | pdf |
- 5.5.4.5.2. Detector tilt specification II (p. 605) | html | pdf |
- 5.5.5. Indexing (pp. 605-606) | html | pdf |
- 5.5.5.1. Detector tilt specification I (p. 605) | html | pdf |
- 5.5.6. Multigrain crystallography (pp. 606-607) | html | pdf |
- 5.5.6.1. Monophase materials (pp. 606-607) | html | pdf |
- 5.5.6.2. Multiphase materials containing unknown phases (p. 607) | html | pdf |
- 5.5.7. Centre-of-mass and stress mapping (pp. 607-608) | html | pdf |
- 5.5.8. 3D grain and orientation mapping (pp. 608-609) | html | pdf |
- 5.5.8.1. Approach 1: Grain-by-grain volumetric mapping (p. 608) | html | pdf |
- 5.5.8.2. Approach 2: Orientation mapping by Monte Carlo optimization (pp. 608-609) | html | pdf |
- 5.5.9. Representation of crystallographic orientation (pp. 609-613) | html | pdf |
- 5.5.9.1. Euler angles (Bunge definition) (pp. 609-610) | html | pdf |
- 5.5.9.2. Rodrigues vectors (pp. 610-611) | html | pdf |
- 5.5.9.3. Unit quaternions (pp. 611-612) | html | pdf |
- 5.5.9.3.1. Quaternion basics (p. 611) | html | pdf |
- 5.5.9.3.2. Relation between unit quaternions and orientations (pp. 611-612) | html | pdf |
- 5.5.9.3.3. Distance (p. 612) | html | pdf |
- 5.5.9.4. Bounding cubes (pp. 612-613) | html | pdf |
- 5.5.10. Representation of elastic strain (p. 613) | html | pdf |
- 5.5.10.1. Definition of strain (p. 613) | html | pdf |
- 5.5.10.2. Strain-to-stress conversion (p. 613) | html | pdf |
- 5.5.11. Crystal symmetry in relation to multigrain samples (pp. 613-614) | html | pdf |
- 5.5.11.1. Fundamental zone (p. 614) | html | pdf |
- 5.5.11.2. Determining the orientation in the fundamental zone (p. 614) | html | pdf |
- 5.5.11.3. Use of symmetry-equivalent orientations for strain and stress characterization (p. 614) | html | pdf |
- 5.5.12. Discussion (p. 614) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.5.1. Irreducible part of Euler space for the seven Bravais classes (p. 614) | html | pdf |
- 5.6. X-ray diffraction from non-crystalline materials: the Debye model (pp. 617-648) | html | pdf | chapter contents |
- 5.6.1. Outline (p. 617) | html | pdf |
- 5.6.2. Crystalline and non-crystalline: an introduction to the Debye model (pp. 617-619) | html | pdf |
- 5.6.3. Application of the Debye equation to a single molecule (pp. 619-621) | html | pdf |
- 5.6.4. The Debye–Menke equation (pp. 621-622) | html | pdf |
- 5.6.5. Verification of the Debye–Menke intensity function (p. 622) | html | pdf |
- 5.6.6. Background removal, intensity normalization and choice of X-ray optics (pp. 622-625) | html | pdf |
- 5.6.7. Application of the Debye normalization to semi-quantitative analysis (pp. 625-627) | html | pdf |
- 5.6.8. Correction for the instrumental intensity response (pp. 627-631) | html | pdf |
- 5.6.9. The full Debye normalization procedure (pp. 631-632) | html | pdf |
- 5.6.10. Application of the Debye normalization procedure (pp. 632-635) | html | pdf |
- 5.6.11. Universal appearance of non-crystalline powder patterns (pp. 635-638) | html | pdf |
- 5.6.12. Steps towards an effective lattice model of high-density randomly packed materials (pp. 638-642) | html | pdf |
- 5.6.13. Practical application of the effective lattice function determination (pp. 642-645) | html | pdf |
- 5.6.14. Debye diffraction models for larger molecular ensembles (pp. 645-646) | html | pdf |
- 5.6.15. Conclusions (pp. 646-647) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.6.1. Analytical peaks for hexatriacontane (top) and silicon (bottom) listed by Miller index (hkl) (p. 629) | html | pdf |
- 5.7. Nanometre-scale structure from powder diffraction: total scattering and atomic pair distribution function analysis (pp. 649-672) | html | pdf | chapter contents |
- 5.7.1. Introduction (p. 649) | html | pdf |
- 5.7.1.1. Types of nanostructure (p. 649) | html | pdf |
- 5.7.2. Scattering from nanostructures (pp. 649-659) | html | pdf |
- 5.7.2.1. The Debye equation (pp. 650-652) | html | pdf |
- 5.7.2.2. Correlation functions (pp. 652-654) | html | pdf |
- 5.7.2.3. Low-angle scattering intensity (pp. 654-655) | html | pdf |
- 5.7.2.4. Calculating ) from models (pp. 655-657) | html | pdf |
- 5.7.2.4.1. Calculating in real space for bulk crystals (p. 655) | html | pdf |
- 5.7.2.4.2. Calculating in real space for nanoparticles modelled as attenuated bulk crystals (pp. 655-656) | html | pdf |
- 5.7.2.4.3. Calculating as the Fourier transform of the properly normalized Debye function (p. 656) | html | pdf |
- 5.7.2.4.4. Calculating in real space from discrete nanoparticle models (pp. 656-657) | html | pdf |
- 5.7.2.5. The extent of small-angle scattering (p. 657) | html | pdf |
- 5.7.2.6. PDFs from structures with multiple elements (pp. 657-658) | html | pdf |
- 5.7.2.7. Differential structure functions (pp. 658-659) | html | pdf |
- 5.7.3. Collecting data for total-scattering and PDF measurements (pp. 659-663) | html | pdf |
- 5.7.3.1. Neutrons (pp. 659-660) | html | pdf |
- 5.7.3.2. X-rays (pp. 660-661) | html | pdf |
- 5.7.3.3. Electrons (pp. 661-662) | html | pdf |
- 5.7.3.4. Q ranges and Q resolutions (pp. 662-663) | html | pdf |
- 5.7.4. Data reduction (pp. 663-664) | html | pdf |
- 5.7.5. Extracting structural information (pp. 664-669) | html | pdf |
- 5.7.5.1. Obtaining the PDF from a model (p. 664) | html | pdf |
- 5.7.5.2. PDFs from multi-element material (p. 664) | html | pdf |
- 5.7.5.3. Model-independent information from the PDF (pp. 664-665) | html | pdf |
- 5.7.5.4. Modelling approaches (pp. 665-669) | html | pdf |
- 5.7.5.4.1. Small-box modelling (pp. 665-666) | html | pdf |
- 5.7.5.4.2. Big-box modelling (pp. 666-668) | html | pdf |
- 5.7.5.4.3. Ab initio nanostructure solution from PDF data (pp. 668-669) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.7.1. List of symbols and abbreviations used in this chapter (p. 650) | html | pdf |
- 5.8. Scattering methods for disordered heterogeneous materials (pp. 673-696) | html | pdf | chapter contents |
- 5.8.1. Introduction and overview (pp. 673-675) | html | pdf |
- 5.8.1.1. Amorphous and non-crystalline materials (p. 673) | html | pdf |
- 5.8.1.2. Disordered and heterogeneous (and multi-component) materials (pp. 673-674) | html | pdf |
- 5.8.1.3. Small-angle and wide-angle scattering tools (p. 674) | html | pdf |
- 5.8.1.4. Tabulated summary of quantitative information obtainable (pp. 674-675) | html | pdf |
- 5.8.1.5. Different notations (p. 675) | html | pdf |
- 5.8.2. Recommended measurement tools (pp. 675-683) | html | pdf |
- 5.8.2.1. Small-angle scattering using a position-sensitive detector (pp. 675-677) | html | pdf |
- 5.8.2.2. Ultra-small-angle scattering using crystal diffraction optics (pp. 677-678) | html | pdf |
- 5.8.2.3. Data reduction and calibration of small-angle scattering data (pp. 678-680) | html | pdf |
- 5.8.2.3.1. Reduction and calibration of 2D SAS data from a position-sensitive detector (p. 679) | html | pdf |
- 5.8.2.3.2. Reduction and calibration of 1D USAXS or USANS data (p. 679) | html | pdf |
- 5.8.2.3.3. Corrections for multiple scattering and flat background (pp. 679-680) | html | pdf |
- 5.8.2.4. Reflectivity, grazing-incidence small-angle scattering and diffraction (pp. 680-681) | html | pdf |
- 5.8.2.5. Wide-angle scattering and other methods for disordered structures (pp. 681-683) | html | pdf |
- 5.8.3. Quantitative analysis of disordered heterogeneous materials (pp. 683-692) | html | pdf |
- 5.8.3.1. Interpretative models for analysis of SAS data (pp. 683-691) | html | pdf |
- 5.8.3.1.1. Guinier approximation (p. 683) | html | pdf |
- 5.8.3.1.2. Porod scattering regime (p. 683) | html | pdf |
- 5.8.3.1.3. Scattering invariant (p. 683) | html | pdf |
- 5.8.3.1.4. Debye–Bueche model (p. 683) | html | pdf |
- 5.8.3.1.5. Shape effects in the form factor (pp. 683-685) | html | pdf |
- 5.8.3.1.6. Particle pair density distribution function (PDDF) (pp. 685-686) | html | pdf |
- 5.8.3.1.7. Size distribution analysis (pp. 686-687) | html | pdf |
- 5.8.3.1.8. Particle structure factor and interparticle interference effects (p. 687) | html | pdf |
- 5.8.3.1.9. Fractal models (pp. 687-688) | html | pdf |
- 5.8.3.1.10. Anomalous SAXS and contrast-variation SANS (pp. 688-689) | html | pdf |
- 5.8.3.1.11. Magnetic SANS analysis (pp. 689-690) | html | pdf |
- 5.8.3.1.12. Further analysis of X-ray reflectivity and GI-SAXS (pp. 690-691) | html | pdf |
- 5.8.3.2. Small-angle scattering effects on wide-angle scattering analysis (p. 691) | html | pdf |
- 5.8.3.3. Combining information from different methods (pp. 691-692) | html | pdf |
- 5.8.4. Prospects for future development and recommended further reading (pp. 692-693) | html | pdf |
- 5.8.4.1. Developments at X-ray synchrotron facilities (p. 692) | html | pdf |
- 5.8.4.2. Developments at steady-state and pulsed neutron sources (pp. 692-693) | html | pdf |
- 5.8.4.3. Future prospects (p. 693) | html | pdf |
- 5.8.4.4. Further reading (p. 693) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.8.1. Information on disordered or heterogeneous material systems using scattering methods (p. 674) | html | pdf |
- Software
- 6.1. Survey of computer programs for powder diffraction (pp. 698-715) | html | pdf | chapter contents |
- References
| html | pdf |
- Tables
- Table 6.1.1. Software for powder diffraction (pp. 699-712) | html | pdf |
- Applications
- 7.1. Macromolecular powder diffraction (pp. 718-736) | html | pdf | chapter contents |
- 7.1.1. Introduction (p. 718) | html | pdf |
- 7.1.2. Sample preparation and handling (pp. 718-720) | html | pdf |
- 7.1.3. Data collection (pp. 720-721) | html | pdf |
- 7.1.4. Cryo-cooling protein powder samples and microstructural effects (pp. 721-723) | html | pdf |
- 7.1.5. Crystal screening (pp. 723-725) | html | pdf |
- 7.1.6. Improvements in data quality via the use of multiple profiles (pp. 725-726) | html | pdf |
- 7.1.7. Structure solution (pp. 726-729) | html | pdf |
- 7.1.7.1. Molecular replacement (pp. 726-728) | html | pdf |
- 7.1.7.2. The isomorphous-replacement method (p. 728) | html | pdf |
- 7.1.7.3. Emerging powder phasing methods (pp. 728-729) | html | pdf |
- 7.1.8. Structure refinement (pp. 729-731) | html | pdf |
- 7.1.8.1. Stereochemical restraints (pp. 729-731) | html | pdf |
- 7.1.8.2. Rigid-body representation of amino-acid residues (p. 731) | html | pdf |
- 7.1.9. Related developments (pp. 731-732) | html | pdf |
- 7.1.10. Concluding remarks (p. 732) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.1.1. Synchrotron beamlines used for protein powder measurements and their key characteristics (p. 721) | html | pdf |
- Table 7.1.2. Software packages that allow extraction of reflection intensities including analysis of multiple profiles and calculation of error estimates (p. 726) | html | pdf |
- 7.2. Forensic applications of X-ray powder diffraction (pp. 737-751) | html | pdf | chapter contents |
- 7.2.1. Introduction (pp. 737-742) | html | pdf |
- 7.2.1.1. Background information (p. 737) | html | pdf |
- 7.2.1.2. Preservation of evidence (p. 737) | html | pdf |
- 7.2.1.3. Versatility (pp. 737-741) | html | pdf |
- 7.2.1.3.1. Drugs and toxicology (pp. 737-738) | html | pdf |
- 7.2.1.3.2. Paint and pigments (pp. 738-739) | html | pdf |
- 7.2.1.3.3. Pathology (p. 739) | html | pdf |
- 7.2.1.3.4. Metals and alloys (p. 739) | html | pdf |
- 7.2.1.3.5. Soils and minerals (pp. 739-740) | html | pdf |
- 7.2.1.3.6. Gunshot residues and explosives (p. 740) | html | pdf |
- 7.2.1.3.7. Paper (p. 740) | html | pdf |
- 7.2.1.3.8. Plastics and polymers (p. 740) | html | pdf |
- 7.2.1.3.9. Miscellaneous (pp. 740-741) | html | pdf |
- 7.2.1.4. Variable specimen size (p. 741) | html | pdf |
- 7.2.1.5. Contamination (p. 741) | html | pdf |
- 7.2.1.6. Identification versus comparison (p. 741) | html | pdf |
- 7.2.1.7. Complementary techniques (pp. 741-742) | html | pdf |
- 7.2.2. Instrumentation (p. 742) | html | pdf |
- 7.2.2.1. Choice of instrumentation (p. 742) | html | pdf |
- 7.2.2.1.1. Reflection or transmission diffractometry (p. 742) | html | pdf |
- 7.2.2.1.2. Scanning detector or stationary position-sensitive detector (PSD) (p. 742) | html | pdf |
- 7.2.2.1.3. One-dimensional or two-dimensional detector (p. 742) | html | pdf |
- 7.2.2.1.4. Energy dispersive X-ray diffraction (EDXRD) (p. 742) | html | pdf |
- 7.2.2.1.5. Focal construct geometry (p. 742) | html | pdf |
- 7.2.2.2. Choice of radiation (p. 742) | html | pdf |
- 7.2.3. Technical procedures (pp. 742-745) | html | pdf |
- 7.2.3.1. Variety and types of specimen encountered and specimen preparation (pp. 742-743) | html | pdf |
- 7.2.3.2. Specimen preparation – powders (p. 743) | html | pdf |
- 7.2.3.3. Specimen preparation – metals and alloys (p. 743) | html | pdf |
- 7.2.3.4. Specimen preparation – monolithic (polycrystalline) (pp. 743-744) | html | pdf |
- 7.2.3.5. Sample preparation – single crystal (p. 744) | html | pdf |
- 7.2.3.6. Interpretation of results: identifications and comparisons, checking procedures (p. 744) | html | pdf |
- 7.2.3.6.1. Use of the ICDD Powder Diffraction File and local databases (p. 744) | html | pdf |
- 7.2.3.7. Data archives for statistical and reference purposes (pp. 744-745) | html | pdf |
- 7.2.3.8. Continuity of evidence (p. 745) | html | pdf |
- 7.2.3.9. Presentation of evidence to the court (p. 745) | html | pdf |
- 7.2.4. Examples of forensic casework involving the use of XRPD (pp. 745-747) | html | pdf |
- 7.2.4.1. Criminal damage to an automobile (p. 746) | html | pdf |
- 7.2.4.2. Fatal road traffic accident (pp. 746-747) | html | pdf |
- 7.2.4.3. Attempted murder? (p. 747) | html | pdf |
- 7.2.4.4. Synthesis of crack cocaine (p. 747) | html | pdf |
- 7.2.5. Summary (pp. 747-748) | html | pdf |
- 7.2.5.1. Advantages and limitations of XRPD in forensic science (pp. 747-748) | html | pdf |
- 7.2.5.2. Thoughts on the future (p. 748) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.2.1. Statistics generated from a decade of drug analysis by XRPD (p. 745) | html | pdf |
- 7.3. Materials for energy storage and conversion (pp. 752-758) | html | pdf | chapter contents |
- 7.3.1. Introduction (p. 752) | html | pdf |
- 7.3.2. Fossil fuel (p. 752) | html | pdf |
- 7.3.3. Hydrogen storage (p. 752) | html | pdf |
- 7.3.4. Wind (p. 753) | html | pdf |
- 7.3.5. Solar (pp. 753-755) | html | pdf |
- 7.3.6. Battery technology (pp. 755-757) | html | pdf |
- References
| html | pdf |
- Figures
- 7.4. Powder diffraction in art and archaeology (pp. 759-766) | html | pdf | chapter contents |
- 7.4.1. Introduction (p. 759) | html | pdf |
- 7.4.2. The information provided by diffraction (p. 759) | html | pdf |
- 7.4.3. Phase identification and quantification (pp. 760-761) | html | pdf |
- 7.4.4. Crystal structure analysis (pp. 761-762) | html | pdf |
- 7.4.5. Texture analysis (p. 762) | html | pdf |
- 7.4.6. Microstructural analysis (pp. 762-763) | html | pdf |
- 7.4.7. Present trends (pp. 763-764) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.4.1. Mean penetration depth of different types of electromagnetic radiation or particle beams into common materials. (p. 760) | html | pdf |
- 7.5. Powder diffraction and pharmaceuticals (pp. 767-781) | html | pdf | chapter contents |
- 7.5.1. Introduction (p. 767) | html | pdf |
- 7.5.2. Some basic background and references (p. 767) | html | pdf |
- 7.5.3. Identification and characterization (p. 767) | html | pdf |
- 7.5.3.1. Polymorphs, salts, solvates, co-crystals (pp. 767-768) | html | pdf |
- 7.5.3.2. Indexing (pp. 768-769) | html | pdf |
- 7.5.3.3. Crystal structure solution (p. 769) | html | pdf |
- 7.5.4. Quantitation of mixtures by traditional and Rietveld methods (pp. 769-771) | html | pdf |
- 7.5.5. Characterization of amorphous materials (pp. 771-773) | html | pdf |
- 7.5.6. Quality control and regulatory aspects (p. 773) | html | pdf |
- 7.5.7. Creating and protecting intellectual property (pp. 773-777) | html | pdf |
- 7.5.7.1. Crystal habit (pp. 776-777) | html | pdf |
- 7.5.8. Counterfeit medicines (pp. 777-778) | html | pdf |
- 7.5.9. Concluding remarks (p. 778) | html | pdf |
- References
| html | pdf |
- Figures
- 7.6. Selected applications of Rietveld analysis in the aluminium industry (pp. 782-792) | html | pdf | chapter contents |
- 7.6.1. Introduction (p. 782) | html | pdf |
- 7.6.2. Bauxite (pp. 782-784) | html | pdf |
- 7.6.3. Quantification of quartz in bauxite (pp. 784-785) | html | pdf |
- 7.6.4. Occurrence and characterization of Zn and Mn in bauxite (p. 785) | html | pdf |
- 7.6.5. Red mud (bauxite residue) (pp. 785-787) | html | pdf |
- 7.6.6. Alumina (pp. 787-788) | html | pdf |
- 7.6.7. Scrubber alumina (p. 788) | html | pdf |
- 7.6.8. Electrolytic bath (pp. 788-790) | html | pdf |
- 7.6.9. Spent potlining (SPL) (p. 790) | html | pdf |
- 7.6.10. Dross (pp. 790-791) | html | pdf |
- 7.6.11. Discussion (p. 791) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.6.1. Typical applications of the Rietveld method in the aluminium industry (p. 782) | html | pdf |
- Table 7.6.2. Comparison of phase concentrations (wt%) for BXT-12 (p. 784) | html | pdf |
- Table 7.6.3. Summary of the phase composition of red mud (p. 786) | html | pdf |
- Table 7.6.4. Phases included in the Rietveld control file for electrolytic bath (p. 789) | html | pdf |
- Table 7.6.5. Comparison of Rietveld and standard method of analysis for electrolytic bath (p. 790) | html | pdf |
- 7.7. Mining and mineral processing (pp. 793-803) | html | pdf | chapter contents |
- 7.7.1. Introduction (p. 793) | html | pdf |
- 7.7.2. Use of powder diffraction in mining and mineral processing (pp. 793-794) | html | pdf |
- 7.7.2.1. Areas of applicability (p. 794) | html | pdf |
- 7.7.3. Powder-diffraction methodology (pp. 794-798) | html | pdf |
- 7.7.3.1. Equipment and data collection (pp. 794-796) | html | pdf |
- 7.7.3.1.1. In-field diffraction (pp. 795-796) | html | pdf |
- 7.7.3.2. Qualitative analysis (pp. 796-797) | html | pdf |
- 7.7.3.3. Quantitative analysis (p. 797) | html | pdf |
- 7.7.3.4. Crystal structural analysis (p. 797) | html | pdf |
- 7.7.3.5. High-throughput and batch processing (pp. 797-798) | html | pdf |
- 7.7.3.5.1. Cluster analysis (pp. 797-798) | html | pdf |
- 7.7.3.5.2. Batch processing (p. 798) | html | pdf |
- 7.7.4. Examples (pp. 798-801) | html | pdf |
- 7.7.4.1. Exploration (p. 799) | html | pdf |
- 7.7.4.2. Process control (pp. 799-800) | html | pdf |
- 7.7.4.2.1. Phosphate mineralogy (p. 799) | html | pdf |
- 7.7.4.2.2. Cement (p. 799) | html | pdf |
- 7.7.4.2.3. Energy-dispersive diffraction (EDD) (pp. 799-800) | html | pdf |
- 7.7.4.2.4. Freeport–McMoRan automated PXRD–NIR mineralogy laboratory (p. 800) | html | pdf |
- 7.7.4.3. Research (pp. 800-801) | html | pdf |
- 7.7.4.3.1. Structure solution (p. 800) | html | pdf |
- 7.7.4.3.2. Environment (pp. 800-801) | html | pdf |
- 7.7.5. Conclusions (p. 801) | html | pdf |
- References
| html | pdf |
- Figures
- 7.8. Ceramic materials (pp. 804-827) | html | pdf | chapter contents |
- 7.8.1. Introduction (pp. 804-805) | html | pdf |
- 7.8.1.1. Definition (p. 804) | html | pdf |
- 7.8.1.2. A brief history of ceramic development (p. 804) | html | pdf |
- 7.8.1.3. Industrial aspects of fine ceramics/advanced ceramics (p. 804) | html | pdf |
- 7.8.2. Categories of ceramics (pp. 805-810) | html | pdf |
- 7.8.2.1. Art and archaeological ceramics (p. 805) | html | pdf |
- 7.8.2.2. Modern technical ceramics (pp. 805-810) | html | pdf |
- 7.8.2.2.1. White ware (p. 805) | html | pdf |
- 7.8.2.2.2. Structural clay products/building and construction materials (Jones & Berard, 1993) (pp. 805-806) | html | pdf |
- 7.8.2.2.3. Machinery (Musikant, 1991) (p. 806) | html | pdf |
- 7.8.2.2.4. Cutting tools (p. 806) | html | pdf |
- 7.8.2.2.5. Nuclear applications (Musikant, 1991) (p. 806) | html | pdf |
- 7.8.2.2.6. Electronic ceramics (pp. 806-809) | html | pdf |
- 7.8.2.2.6.1. Batteries and fuel cells (p. 806) | html | pdf |
- 7.8.2.2.6.2. Ceramic capacitors (pp. 806-807) | html | pdf |
- 7.8.2.2.6.3. High-temperature ceramic superconductors (p. 807) | html | pdf |
- 7.8.2.2.6.4. Ferroelectric ceramics (p. 807) | html | pdf |
- 7.8.2.2.6.5. Glass ceramics (p. 807) | html | pdf |
- 7.8.2.2.6.6. Integrated-circuit packaging and substrates (pp. 807-808) | html | pdf |
- 7.8.2.2.6.7. Magnetic ceramics (p. 808) | html | pdf |
- 7.8.2.2.6.8. Microwave communication ceramics (p. 808) | html | pdf |
- 7.8.2.2.6.9. Piezoelectric ceramics (p. 808) | html | pdf |
- 7.8.2.2.6.10. Photovoltaics (solar cells) (pp. 808-809) | html | pdf |
- 7.8.2.2.6.11. Thermoelectric ceramics (p. 809) | html | pdf |
- 7.8.2.2.6.12. Ceramic sensors (p. 809) | html | pdf |
- 7.8.2.2.6.13. Ceramic varistors (p. 809) | html | pdf |
- 7.8.2.2.7. Optical ceramics or photonic ceramics (pp. 809-810) | html | pdf |
- 7.8.2.2.8. Refractory ceramics (p. 810) | html | pdf |
- 7.8.2.2.9. Medical and bioceramics (p. 810) | html | pdf |
- 7.8.3. Applications of powder X-ray diffraction to the studies of ceramics (pp. 810-825) | html | pdf |
- 7.8.3.1. Phase characterization (pp. 811-814) | html | pdf |
- 7.8.3.1.1. Phase identification (pp. 811-812) | html | pdf |
- 7.8.3.1.2. Quantitative analysis of phases (p. 812) | html | pdf |
- 7.8.3.1.3. Phase equilibria, crystal chemistry and crystallography (pp. 812-813) | html | pdf |
- 7.8.3.1.4. Phase evolution (pp. 813-814) | html | pdf |
- 7.8.3.1.5. Phase transformation (p. 814) | html | pdf |
- 7.8.3.2. Structure and microstructure (pp. 814-819) | html | pdf |
- 7.8.3.2.1. Crystal structure (pp. 814-815) | html | pdf |
- 7.8.3.2.2. Crystallite size (pp. 815-816) | html | pdf |
- 7.8.3.2.3. Imperfection (defects) in ceramics (pp. 816-817) | html | pdf |
- 7.8.3.2.4. Residual stress measurements of ceramic components (pp. 817-818) | html | pdf |
- 7.8.3.2.5. Texture/preferred orientation (pp. 818-819) | html | pdf |
- 7.8.3.2.6. Thickness and roughness of ceramic films (p. 819) | html | pdf |
- 7.8.3.3. Processing and performance (pp. 819-825) | html | pdf |
- 7.8.3.3.1. Sintering/densification/grain growth (pp. 819-820) | html | pdf |
- 7.8.3.3.2. Reaction mechanisms/sequence (pp. 820-821) | html | pdf |
- 7.8.3.3.3. Kinetics and reaction rate (pp. 821-822) | html | pdf |
- 7.8.3.3.4. Transformation toughening (p. 822) | html | pdf |
- 7.8.3.3.5. Degradation/corrosion of ceramics (pp. 822-824) | html | pdf |
- 7.8.3.3.6. Glass ceramics (crystallization processes) (p. 824) | html | pdf |
- 7.8.3.3.7. Microstructure evolution (p. 824) | html | pdf |
- 7.8.3.3.8. Bulk modulus/compressibility (pp. 824-825) | html | pdf |
- 7.8.4. Summary (p. 825) | html | pdf |
- References
| html | pdf |
- Figures
- 7.9. Applications in glass-ceramics (pp. 828-833) | html | pdf | chapter contents |
- 7.9.1. Introduction (pp. 828-829) | html | pdf |
- 7.9.1.1. Devitrification (pp. 828-829) | html | pdf |
- 7.9.1.2. Applications of powder diffraction (p. 829) | html | pdf |
- 7.9.2. Methods (p. 829) | html | pdf |
- 7.9.2.1. Time–temperature profiles (p. 829) | html | pdf |
- 7.9.3. Qualitative analysis of devitrification (pp. 829-830) | html | pdf |
- 7.9.4. Kinetics analysis (pp. 830-833) | html | pdf |
- 7.9.4.1. Theory (pp. 830-831) | html | pdf |
- 7.9.4.2. Complexities in kinetics measurements (p. 831) | html | pdf |
- 7.9.4.3. Kinetics analysis example 1: glass to single-phase crystal (p. 831) | html | pdf |
- 7.9.4.4. Kinetics analysis example 2: glass to crystal to crystal (pp. 831-832) | html | pdf |
- 7.9.4.5. Kinetics analysis example 3: effects of nucleation (pp. 832-833) | html | pdf |
- 7.9.5. Remnant glass compositions via quantitative analysis (p. 833) | html | pdf |
- 7.9.6. Summary (p. 833) | html | pdf |
- References
| html | pdf |
- Figures
- 7.10. Industrial organic pigments (pp. 834-842) | html | pdf | chapter contents |
- 7.10.1. On organic pigments (pp. 834-835) | html | pdf |
- 7.10.2. Main applications of X-ray powder diffraction to organic pigments (and other organic compounds) (pp. 835-841) | html | pdf |
- 7.10.2.1. Qualitative phase analysis (pp. 835-836) | html | pdf |
- 7.10.2.2. Quantitative phase analysis (pp. 836-837) | html | pdf |
- 7.10.2.3. Determination of the domain size (p. 837) | html | pdf |
- 7.10.2.4. Structure determination from powder-diffraction data (pp. 837-838) | html | pdf |
- 7.10.2.4.1. Procedure (p. 837) | html | pdf |
- 7.10.2.4.2. Examples (pp. 837-838) | html | pdf |
- 7.10.2.4.2.1. Pigment Red 57:1 (pp. 837-838) | html | pdf |
- 7.10.2.4.2.2. Dioxazine pigment (p. 838) | html | pdf |
- 7.10.2.4.2.3. Pigment Red 170 (p. 838) | html | pdf |
- 7.10.2.5. Determination of the amorphous content (p. 838) | html | pdf |
- 7.10.2.6. Investigation of local structures of nanocrystalline and amorphous organic compounds using pair-distribution function analyses (pp. 838-841) | html | pdf |
- 7.10.2.6.1. General (p. 839) | html | pdf |
- 7.10.2.6.2. Example: nanocrystalline phase of Pigment Yellow 213 (pp. 839-841) | html | pdf |
- References
| html | pdf |
- Figures
- 7.11. Powder diffraction in the petroleum and petrochemical industries (pp. 843-854) | html | pdf | chapter contents |
- 7.11.1. Introduction (p. 843) | html | pdf |
- 7.11.2. Exploration and production (pp. 843-844) | html | pdf |
- 7.11.2.1. Rock properties (p. 843) | html | pdf |
- 7.11.2.2. Clay mineralogy and the Reynolds Cup (pp. 843-844) | html | pdf |
- 7.11.2.3. Gas hydrates (p. 844) | html | pdf |
- 7.11.2.4. Corrosion deposits (p. 844) | html | pdf |
- 7.11.3. Refining and petrochemicals (pp. 844-852) | html | pdf |
- 7.11.3.1. Corrosion deposits (pp. 844-846) | html | pdf |
- 7.11.3.1.1. [Al(H2O)6][Al(H2O)5(SO4)](H3O)2(SO4)5 (pp. 844-845) | html | pdf |
- 7.11.3.1.2. (NH4)Fe(CO3)(OH)2 (p. 845) | html | pdf |
- 7.11.3.1.3. (NH4)Fe2S3 (pp. 845-846) | html | pdf |
- 7.11.3.2. Catalysts (pp. 846-852) | html | pdf |
- 7.11.3.2.1. Quantitative analysis of zeolite catalysts (pp. 846-847) | html | pdf |
- 7.11.3.2.2. Extraframework sites in Na-FAU (pp. 847-849) | html | pdf |
- 7.11.3.2.3. Xenon in Na-FAU (pp. 849-850) | html | pdf |
- 7.11.3.2.4. CO2 in Na-FAU (p. 850) | html | pdf |
- 7.11.3.2.5. Framework compositions (p. 850) | html | pdf |
- 7.11.3.2.6. (VO)2P2O7 (pp. 850-851) | html | pdf |
- 7.11.3.2.7. Vent-gas oxidation catalyst (pp. 851-852) | html | pdf |
- 7.11.4. In situ studies (pp. 852-853) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.11.1. Crystal structure of Na-FAU LZ-Y52 (p. 848) | html | pdf |
- Table 7.11.2. Extraframework sites in Xe/Na-FAU at 20 K (p. 849) | html | pdf |
- Table 7.11.3. GSAS profile coefficients for fresh (VO)2P2O7 catalyst and a catalyst that has been used for three years (p. 850) | html | pdf |
- Table 7.11.4. Crystallite sizes for fresh and used vent-gas oxidation catalysts (p. 851) | html | pdf |
- 7.12. Powder-diffraction characterization of cements (pp. 855-867) | html | pdf | chapter contents |
- 7.12.1. An introduction to cements and types of cements (p. 855) | html | pdf |
- 7.12.2. Rietveld quantitative phase analysis of cements (pp. 855-856) | html | pdf |
- 7.12.2.1. Obtaining crystal-structure information (pp. 855-856) | html | pdf |
- 7.12.2.2. Data analysis (p. 856) | html | pdf |
- 7.12.3. Phase quantification of Portland cements (pp. 856-859) | html | pdf |
- 7.12.3.1. Quantification of Portland clinkers (pp. 856-857) | html | pdf |
- 7.12.3.2. Quantification of Portland cements and blended cements (pp. 857-858) | html | pdf |
- 7.12.3.3. Online quantification of Portland clinkers and cements (pp. 858-859) | html | pdf |
- 7.12.4. Quantification of other cementitious materials (pp. 859-861) | html | pdf |
- 7.12.4.1. Calcium aluminate cements (p. 859) | html | pdf |
- 7.12.4.2. Calcium sulfoaluminate cements (pp. 859-860) | html | pdf |
- 7.12.4.3. Calcium sulfobelite cements (p. 860) | html | pdf |
- 7.12.4.4. Materials with pozzolanic activity (pp. 860-861) | html | pdf |
- 7.12.4.5. Other cements (p. 861) | html | pdf |
- 7.12.5. Powder-diffraction studies on the hydration of cements (pp. 861-863) | html | pdf |
- 7.12.5.1. Hydration studies of Portland cements and blended Portland cements (pp. 861-862) | html | pdf |
- 7.12.5.2. Hydration studies of alternative cementitious materials (pp. 862-863) | html | pdf |
- 7.12.6. The use of synchrotron and neutron powder diffraction for studying cements (pp. 863-864) | html | pdf |
- 7.12.7. Conclusions and outlook (p. 864) | html | pdf |
- References
| html | pdf |
- Figures
- 7.13. Powder diffraction of superconductors (pp. 868-884) | html | pdf | chapter contents |
- 7.13.1. Introduction (pp. 868-870) | html | pdf |
- 7.13.1.1. Properties of superconductors (p. 868) | html | pdf |
- 7.13.1.2. A brief description of superconducting systems (pp. 868-870) | html | pdf |
- 7.13.2. Advantages of structure analysis from powder diffraction (pp. 870-872) | html | pdf |
- 7.13.2.1. Comparison of XPD and NPD (p. 871) | html | pdf |
- 7.13.2.2. Choice of radiation (p. 872) | html | pdf |
- 7.13.3. Analysis of the chemical and structural features of nonstoichiometric superconductors (pp. 872-878) | html | pdf |
- 7.13.3.1. Charge transfer and valence-state manipulation (pp. 872-875) | html | pdf |
- 7.13.3.2. Modelling of layer structures (pp. 875-876) | html | pdf |
- 7.13.3.3. Structural transformations (pp. 876-878) | html | pdf |
- 7.13.4. Magnetic order in superconductors and parent compounds (pp. 878-879) | html | pdf |
- 7.13.5. Conclusions (p. 879) | html | pdf |
- Appendix 7.13.1. The study of long-range magnetic order in superconductors (pp. 879-882) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.13.1. Selected superconducting elements, alloys, intermetallics, copper oxides, iron-based compounds and others (p. 869) | html | pdf |
- Table 7.13.2. Selected layered copper-oxide superconductors (p. 875) | html | pdf |
- Table 7.13.3. Crystal systems, conventional coordinate systems and the 36 magnetic lattices in three dimensions (p. 880) | html | pdf |
- Table 7.13.4. Integral reflection conditions of centred magnetic lattices corresponding to Fig. 7.13.17 (p. 882) | html | pdf |
- 7.14. Powder diffraction by minerals (pp. 885-892) | html | pdf | chapter contents |
- 7.14.1. Powder diffraction and characterization of new mineral species (pp. 885-886) | html | pdf |
- 7.14.2. Mineral physics through in situ powder-diffraction experiments (pp. 886-889) | html | pdf |
- 7.14.2.1. Thermoelastic behaviour of minerals (pp. 886-887) | html | pdf |
- 7.14.2.2. Negative thermal expansion in minerals (p. 887) | html | pdf |
- 7.14.2.3. Dehydration of nonporous minerals (pp. 887-888) | html | pdf |
- 7.14.2.4. Dehydration and adsorption/desorption mechanisms in porous materials (p. 888) | html | pdf |
- 7.14.2.5. High-pressure (HP)-induced reaction/penetration in porous materials (p. 888) | html | pdf |
- 7.14.2.6. Phase transitions and spontaneous strain in minerals (pp. 888-889) | html | pdf |
- 7.14.2.7. HT studies related to CO2 sequestration (p. 889) | html | pdf |
- 7.14.3. Minerals related to human health, the biosphere and planetary exploration (pp. 889-890) | html | pdf |
- 7.14.3.1. Fibrous minerals (pp. 889-890) | html | pdf |
- 7.14.3.2. Biominerals (p. 890) | html | pdf |
- 7.14.3.3. Mars mineralogy (p. 890) | html | pdf |
- References
| html | pdf |
- Figures