International Tables for Crystallography
Volume F: Crystallography of biological macromolecules
First online edition (2006) ISBN: 978-0-7923-6857-1 doi: 10.1107/97809553602060000106
|
1
|
2
|
Edited by M. G. Rossmann and E. Arnold
Contents
- Introduction
- 1.2. Historical background (pp. 4-9) | html | pdf | chapter contents |
- 1.2.1. Introduction (p. 4) | html | pdf |
- 1.2.2. 1912 to the 1950s (pp. 4-5) | html | pdf |
- 1.2.3. The first investigations of biological macromolecules (p. 5) | html | pdf |
- 1.2.4. Globular proteins in the 1950s (pp. 5-7) | html | pdf |
- 1.2.5. The first protein structures (1957 to the 1970s) (pp. 7-8) | html | pdf |
- 1.2.6. Technological developments (1958 to the 1980s) (pp. 8-9) | html | pdf |
- 1.2.7. Meetings (p. 9) | html | pdf |
- References
| html | pdf |
- Figures
- 1.3. Macromolecular crystallography and medicine (pp. 10-25) | html | pdf | chapter contents |
- 1.3.1. Introduction (p. 10) | html | pdf |
- 1.3.2. Crystallography and medicine (pp. 10-11) | html | pdf |
- 1.3.3. Crystallography and genetic diseases (pp. 11-12) | html | pdf |
- 1.3.4. Crystallography and development of novel pharmaceuticals (pp. 12-24) | html | pdf |
- 1.3.4.1. Infectious diseases (pp. 13-15) | html | pdf |
- 1.3.4.1.1. Viral diseases (p. 13) | html | pdf |
- 1.3.4.1.2. Bacterial diseases (p. 13) | html | pdf |
- 1.3.4.1.3. Protozoan infections (pp. 13-15) | html | pdf |
- 1.3.4.1.4. Fungi (p. 15) | html | pdf |
- 1.3.4.1.5. Helminths (p. 15) | html | pdf |
- 1.3.4.2. Resistance (pp. 15-21) | html | pdf |
- 1.3.4.3. Non-communicable diseases (pp. 21-24) | html | pdf |
- 1.3.4.3.1. Cancers (p. 21) | html | pdf |
- 1.3.4.3.2. Diabetes (p. 21) | html | pdf |
- 1.3.4.3.3. Blindness (p. 21) | html | pdf |
- 1.3.4.3.4. Cardiovascular disorders (p. 21) | html | pdf |
- 1.3.4.3.5. Neurological disorders (p. 24) | html | pdf |
- 1.3.4.4. Drug metabolism and crystallography (p. 24) | html | pdf |
- 1.3.4.5. Drug manufacturing and crystallography (p. 24) | html | pdf |
- 1.3.5. Vaccines, immunology and crystallography (pp. 24-25) | html | pdf |
- 1.3.6. Outlook and dreams (p. 25) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.3.3.1. Crystal structures and genetic diseases (p. 11) | html | pdf |
- Table 1.3.4.1. Important human pathogenic viruses and their proteins (pp. 14-15) | html | pdf |
- Table 1.3.4.2. Protein structures of important human pathogenic bacteria (pp. 16-18) | html | pdf |
- Table 1.3.4.3. Protein structures of important human pathogenic protozoa, fungi and helminths (pp. 19-20) | html | pdf |
- Table 1.3.4.4. Mechanisms of resistance (p. 20) | html | pdf |
- Table 1.3.4.5. Important human protein structures in drug design (pp. 22-23) | html | pdf |
- 1.4. Perspectives for the future (pp. 26-43) | html | pdf | chapter contents |
- 1.4.1. Gazing into the crystal ball (pp. 26-27) | html | pdf |
- 1.4.1.1. What can we expect to see in the future of science and technology in general? (p. 26) | html | pdf |
- 1.4.1.2. How will crystallography change in the future? (pp. 26-27) | html | pdf |
- 1.4.2. Brief comments on Gazing into the crystal ball (p. 27) | html | pdf |
- Basic crystallography
- 2.1. Introduction to basic crystallography (pp. 45-63) | html | pdf | chapter contents |
- 2.1.1. Crystals (pp. 45-46) | html | pdf |
- 2.1.2. Symmetry (pp. 46-47) | html | pdf |
- 2.1.3. Point groups and crystal systems (pp. 47-52) | html | pdf |
- 2.1.4. Basic diffraction physics (pp. 52-57) | html | pdf |
- 2.1.4.1. Diffraction by one electron (pp. 52-53) | html | pdf |
- 2.1.4.2. Scattering by a system of two electrons (p. 53) | html | pdf |
- 2.1.4.3. Scattering by atoms (pp. 53-54) | html | pdf |
- 2.1.4.3.1. Scattering by one atom (pp. 53-54) | html | pdf |
- 2.1.4.3.2. Scattering by a plane of atoms (p. 54) | html | pdf |
- 2.1.4.4. Anomalous dispersion (pp. 54-55) | html | pdf |
- 2.1.4.5. Scattering by a crystal (pp. 55-56) | html | pdf |
- 2.1.4.6. The structure factor (pp. 56-57) | html | pdf |
- 2.1.5. Reciprocal space and the Ewald sphere (pp. 57-58) | html | pdf |
- 2.1.6. Mosaicity and integrated reflection intensity (pp. 58-59) | html | pdf |
- 2.1.7. Calculation of electron density (pp. 59-60) | html | pdf |
- 2.1.8. Symmetry in the diffraction pattern (pp. 60-61) | html | pdf |
- 2.1.9. The Patterson function (pp. 61-62) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.1.2.1. The most common space groups for protein crystals (p. 46) | html | pdf |
- Table 2.1.3.1. The 11 enantiomorphic point groups (pp. 48-49) | html | pdf |
- Table 2.1.3.2. The 11 point groups with a centre of symmetry (pp. 50-51) | html | pdf |
- Table 2.1.3.3. The icosahedral point group 532 (p. 51) | html | pdf |
- Table 2.1.3.4. The seven crystal systems (p. 52) | html | pdf |
- Table 2.1.4.1. The position of the Kα edge of different elements (p. 54) | html | pdf |
- Techniques of molecular biology
- 3.1. Preparing recombinant proteins for X-ray crystallography (pp. 65-80) | html | pdf | chapter contents |
- 3.1.1. Introduction (p. 65) | html | pdf |
- 3.1.2. Overview (p. 65) | html | pdf |
- 3.1.3. Engineering an expression construct (pp. 66-67) | html | pdf |
- 3.1.3.1. Choosing an expression system (p. 66) | html | pdf |
- 3.1.3.2. Creating an expression construct (p. 66) | html | pdf |
- 3.1.3.3. Addition of tags or domains (p. 67) | html | pdf |
- 3.1.4. Expression systems (pp. 67-74) | html | pdf |
- 3.1.4.1. E. coli (pp. 67-71) | html | pdf |
- 3.1.4.2. Yeast (pp. 71-72) | html | pdf |
- 3.1.4.3. Baculoviruses and insect cells (pp. 72-73) | html | pdf |
- 3.1.4.4. Mammalian cells (pp. 73-74) | html | pdf |
- 3.1.5. Protein purification (pp. 75-77) | html | pdf |
- 3.1.5.1. Conventional protein purification (pp. 75-76) | html | pdf |
- 3.1.5.2. Affinity purification (pp. 76-77) | html | pdf |
- 3.1.5.3. Purifying and refolding denatured proteins (p. 77) | html | pdf |
- 3.1.6. Characterization of the purified product (pp. 77-78) | html | pdf |
- 3.1.6.1. Assessment of sample homogeneity (pp. 77-78) | html | pdf |
- 3.1.6.2. Protein storage (p. 78) | html | pdf |
- 3.1.7. Reprise (pp. 78-79) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.1.4.1. Strategies for improving expression in E. coli (p. 68) | html | pdf |
- Crystallization
- 4.1. General methods (pp. 81-93) | html | pdf | chapter contents |
- 4.1.1. Introduction (p. 81) | html | pdf |
- 4.1.2. Crystallization arrangements and methodologies (pp. 81-86) | html | pdf |
- 4.1.2.1. General considerations (p. 81) | html | pdf |
- 4.1.2.2. Batch crystallizations (pp. 81-82) | html | pdf |
- 4.1.2.3. Dialysis methods (p. 82) | html | pdf |
- 4.1.2.4. Vapour diffusion methods (pp. 82-84) | html | pdf |
- 4.1.2.5. Interface diffusion and the gel acupuncture method (p. 84) | html | pdf |
- 4.1.2.6. Crystallization in gelled media (pp. 84-86) | html | pdf |
- 4.1.2.7. Miscellaneous crystallization methods (p. 86) | html | pdf |
- 4.1.2.8. Seeding (p. 86) | html | pdf |
- 4.1.3. Parameters that affect crystallization of macromolecules (pp. 86-88) | html | pdf |
- 4.1.3.1. Crystallizing agents (pp. 86-87) | html | pdf |
- 4.1.3.2. Other chemical, physical and biochemical variables (pp. 87-88) | html | pdf |
- 4.1.3.3. Additives (p. 88) | html | pdf |
- 4.1.4. How to crystallize a new macromolecule (pp. 88-89) | html | pdf |
- 4.1.4.1. Rules and general principles (p. 88) | html | pdf |
- 4.1.4.2. Purity and homogeneity (p. 88) | html | pdf |
- 4.1.4.3. Sample preparation (pp. 88-89) | html | pdf |
- 4.1.4.4. Strategic concerns: a summary (p. 89) | html | pdf |
- 4.1.5. Techniques for physical characterization of crystallization (pp. 89-91) | html | pdf |
- 4.1.5.1. Techniques for studying prenucleation and nucleation (pp. 89-90) | html | pdf |
- 4.1.5.2. Techniques for studying growth mechanisms (pp. 90-91) | html | pdf |
- 4.1.5.3. Techniques for evaluating crystal perfection (p. 91) | html | pdf |
- 4.1.6. Use of microgravity (pp. 91-93) | html | pdf |
- 4.1.6.1. Why microgravity? (p. 91) | html | pdf |
- 4.1.6.2. Instrumentation (p. 91) | html | pdf |
- 4.1.6.3. Present results: a summary (pp. 91-92) | html | pdf |
- 4.1.6.4. Interpretation of data (pp. 92-93) | html | pdf |
- 4.1.6.5. The future of crystallization under microgravity (p. 93) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.1.2.1. Factors affecting crystallization (p. 83) | html | pdf |
- Table 4.1.2.2. Crystallizing agents for protein crystallization (pp. 85-86) | html | pdf |
- 4.2. Crystallization of membrane proteins (pp. 94-99) | html | pdf | chapter contents |
- 4.2.1. Introduction (p. 94) | html | pdf |
- 4.2.2. Principles of membrane-protein crystallization (p. 94) | html | pdf |
- 4.2.3. General properties of detergents relevant to membrane-protein crystallization (pp. 94-98) | html | pdf |
- 4.2.4. The `small amphiphile concept' (p. 98) | html | pdf |
- 4.2.5. Membrane-protein crystallization with the help of antibody Fv fragments (pp. 98-99) | html | pdf |
- 4.2.6. Membrane-protein crystallization using cubic bicontinuous lipidic phases (p. 99) | html | pdf |
- 4.2.7. General recommendations (p. 99) | html | pdf |
- References
| html | pdf |
- Tables
- Table 4.2.1.1. Compilation of membrane proteins with known structures, including crystallization conditions and key references for the structure determinations (pp. 95-96) | html | pdf |
- Table 4.2.2.1. Potentially useful detergents for membrane-protein crystallizations with molecular weights and CMCs [in water, from Michel (1991) or as provided by the vendor] (p. 97) | html | pdf |
- Table 4.2.3.1. Summary of the results of attempts to crystallize the two-subunit cytochrome c oxidase from the soil bacterium Paracoccus denitrificans using different detergents (after Ostermeier et al., 1997) (p. 98) | html | pdf |
- 4.3. Application of protein engineering to improve crystal properties (pp. 100-110) | html | pdf | chapter contents |
- 4.3.1. Introduction (p. 100) | html | pdf |
- 4.3.2. Improving solubility (pp. 100-101) | html | pdf |
- 4.3.3. Use of fusion proteins (p. 101) | html | pdf |
- 4.3.4. Mutations to accelerate crystallization (p. 101) | html | pdf |
- 4.3.5. Mutations to improve diffraction quality (pp. 101-102) | html | pdf |
- 4.3.6. Avoiding protein heterogeneity (p. 102) | html | pdf |
- 4.3.7. Engineering crystal contacts to enhance crystallization in a particular crystal form (pp. 102-103) | html | pdf |
- 4.3.8. Engineering heavy-atom sites (p. 103) | html | pdf |
- References
| html | pdf |
- Crystal properties and handling
- 5.1. Crystal morphology, optical properties of crystals and crystal mounting (pp. 111-116) | html | pdf | chapter contents |
- 5.1.1. Crystal morphology and optical properties (pp. 111-114) | html | pdf |
- 5.1.1.1. Crystal growth habits (pp. 111-112) | html | pdf |
- 5.1.1.1.1. The shape of a crystal – growth habits (p. 111) | html | pdf |
- 5.1.1.1.2. Quality of protein crystals (p. 111) | html | pdf |
- 5.1.1.1.3. Polymorphism (pp. 111-112) | html | pdf |
- 5.1.1.1.4. Twinning (p. 112) | html | pdf |
- 5.1.1.2. Properties of crystal faces (pp. 112-113) | html | pdf |
- 5.1.1.2.1. Indexing crystal faces (pp. 112-113) | html | pdf |
- 5.1.1.2.2. Measurement of crystal habit (p. 113) | html | pdf |
- 5.1.1.3. Optical properties (p. 113) | html | pdf |
- 5.1.1.3.1. Crystals between crossed polarizers (p. 113) | html | pdf |
- 5.1.1.3.2. Refractive indices and what they tell us about structure (p. 113) | html | pdf |
- 5.1.1.4. Packing of molecules in crystals (p. 114) | html | pdf |
- 5.1.2. Crystal mounting (pp. 114-116) | html | pdf |
- 5.1.2.1. Introduction to crystal mounting (p. 114) | html | pdf |
- 5.1.2.2. Tools for crystal mounting (pp. 114-115) | html | pdf |
- 5.1.2.2.1. Microscope (p. 114) | html | pdf |
- 5.1.2.2.2. Capillaries (pp. 114-115) | html | pdf |
- 5.1.2.2.3. Thumb pump (p. 115) | html | pdf |
- 5.1.2.2.4. Heater (p. 115) | html | pdf |
- 5.1.2.3. Capillary mounting (pp. 115-116) | html | pdf |
- References
| html | pdf |
- Figures
- 5.2. Crystal-density measurements (pp. 117-123) | html | pdf | chapter contents |
- 5.2.1. Introduction (p. 117) | html | pdf |
- 5.2.2. Solvent in macromolecular crystals (p. 117) | html | pdf |
- 5.2.3. Matthews number (p. 117) | html | pdf |
- 5.2.4. Algebraic concepts (pp. 117-118) | html | pdf |
- 5.2.5. Experimental estimation of hydration (p. 118) | html | pdf |
- 5.2.6. Methods for measuring crystal density (pp. 118-121) | html | pdf |
- 5.2.6.1. Pycnometry (pp. 118-119) | html | pdf |
- 5.2.6.2. Volumenometry (p. 119) | html | pdf |
- 5.2.6.3. The method of Archimedes (p. 119) | html | pdf |
- 5.2.6.4. Immersion microbalance (p. 119) | html | pdf |
- 5.2.6.5. Flotation (p. 119) | html | pdf |
- 5.2.6.6. Tomographic crystal-volume measurement (pp. 119-120) | html | pdf |
- 5.2.6.7. Gradient-tube method (pp. 120-121) | html | pdf |
- 5.2.7. How to handle the solvent density (p. 121) | html | pdf |
- References
| html | pdf |
- Tables
- Table 5.2.6.1. Organic liquids for density determinations (p. 120) | html | pdf |
- Table 5.2.6.2. Inorganic salts for density determinations (p. 120) | html | pdf |
- Radiation sources and optics
- 6.1. X-ray sources (pp. 125-132) | html | pdf | chapter contents |
- 6.1.1. Overview (p. 125) | html | pdf |
- 6.1.2. Generation of X-rays (pp. 125-127) | html | pdf |
- 6.1.2.1. Stationary-target X-ray tubes (p. 125) | html | pdf |
- 6.1.2.2. Rotating-anode X-ray tubes (pp. 125-126) | html | pdf |
- 6.1.2.3. Microfocus X-ray tubes (p. 126) | html | pdf |
- 6.1.2.4. Synchrotron-radiation sources (pp. 126-127) | html | pdf |
- 6.1.3. Properties of the X-ray beam (pp. 127-129) | html | pdf |
- 6.1.3.1. Beam size (p. 128) | html | pdf |
- 6.1.3.2. X-ray wavelength (p. 128) | html | pdf |
- 6.1.3.3. Spectral composition (p. 128) | html | pdf |
- 6.1.3.4. Intensity (pp. 128-129) | html | pdf |
- 6.1.3.5. Cross fire (p. 129) | html | pdf |
- 6.1.3.6. Beam stability (p. 129) | html | pdf |
- 6.1.4. Beam conditioning (pp. 129-132) | html | pdf |
- 6.1.4.1. X-ray mirrors (pp. 129-131) | html | pdf |
- 6.1.4.2. Focusing collimators for microfocus sources (p. 131) | html | pdf |
- 6.1.4.3. Other focusing collimators (p. 131) | html | pdf |
- 6.1.4.4. Crystal monochromators (pp. 131-132) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 6.1.2.1. Standard X-ray tube inserts (p. 125) | html | pdf |
- 6.2. Neutron sources (pp. 133-142) | html | pdf | chapter contents |
- 6.2.1. Reactors (pp. 133-137) | html | pdf |
- 6.2.1.1. Basic reactor physics (p. 133) | html | pdf |
- 6.2.1.2. Moderators for neutron scattering (pp. 133-134) | html | pdf |
- 6.2.1.2.1. Thermal moderators (p. 134) | html | pdf |
- 6.2.1.2.2. Cold moderators (p. 134) | html | pdf |
- 6.2.1.3. Beamline components (pp. 134-136) | html | pdf |
- 6.2.1.3.1. Collimators and filters (p. 135) | html | pdf |
- 6.2.1.3.2. Crystal monochromators (p. 135) | html | pdf |
- 6.2.1.3.3. Multilayer monochromators and supermirrors (pp. 135-136) | html | pdf |
- 6.2.1.3.4. Velocity selectors (p. 136) | html | pdf |
- 6.2.1.3.5. Neutron guides (p. 136) | html | pdf |
- 6.2.1.4. Detectors (pp. 136-137) | html | pdf |
- 6.2.1.4.1. Multiwire proportional counters (p. 136) | html | pdf |
- 6.2.1.4.2. Image plates (pp. 136-137) | html | pdf |
- 6.2.1.5. Instrument resolution functions (p. 137) | html | pdf |
- 6.2.2. Spallation neutron sources (pp. 137-139) | html | pdf |
- 6.2.2.1. Spallation neutron production (pp. 137-138) | html | pdf |
- 6.2.2.2. Moderators (pp. 138-139) | html | pdf |
- 6.2.2.3. Beamline optics (p. 139) | html | pdf |
- 6.2.2.4. Time-of-flight techniques (p. 139) | html | pdf |
- 6.2.2.5. Data-collection considerations (p. 139) | html | pdf |
- 6.2.3. Summary (p. 139) | html | pdf |
- References
| html | pdf |
- Figures
- X-ray detectors
- 7.1. Comparison of X-ray detectors (pp. 143-147) | html | pdf | chapter contents |
- 7.1.1. Commonly used detectors: general considerations (pp. 143-144) | html | pdf |
- 7.1.2. Evaluating and comparing detectors (pp. 144-145) | html | pdf |
- 7.1.3. Characteristics of different detector approaches (pp. 145-147) | html | pdf |
- 7.1.3.1. Point versus linear versus area detection (p. 145) | html | pdf |
- 7.1.3.2. Counting and integrating detectors (pp. 145-147) | html | pdf |
- 7.1.3.2.1. Photon-counting detectors (pp. 145-146) | html | pdf |
- 7.1.3.2.2. Integrating detectors (pp. 146-147) | html | pdf |
- 7.1.4. Future detectors (p. 147) | html | pdf |
- References
| html | pdf |
- Tables
- Table 7.1.1.1. X-ray detectors for crystallography (p. 143) | html | pdf |
- 7.2. CCD detectors (pp. 148-153) | html | pdf | chapter contents |
- 7.2.1. Overview (p. 148) | html | pdf |
- 7.2.2. CCD detector assembly (pp. 148-149) | html | pdf |
- 7.2.3. Calibration and correction (pp. 149-151) | html | pdf |
- 7.2.3.1. Dark-current subtraction (p. 149) | html | pdf |
- 7.2.3.2. Removal of radioactive decay events (pp. 149-150) | html | pdf |
- 7.2.3.3. Geometric distortion (p. 150) | html | pdf |
- 7.2.3.4. Flat-field corrections (pp. 150-151) | html | pdf |
- 7.2.3.5. Obliquity correction (p. 151) | html | pdf |
- 7.2.3.6. Modular images (p. 151) | html | pdf |
- 7.2.4. Detector system integration (pp. 151-152) | html | pdf |
- 7.2.5. Applications to macromolecular crystallography (p. 152) | html | pdf |
- 7.2.6. Future of CCD detectors (p. 152) | html | pdf |
- References
| html | pdf |
- Figures
- Synchrotron crystallography
- 8.1. Synchrotron-radiation instrumentation, methods and scientific utilization (pp. 155-166) | html | pdf | chapter contents |
- 8.1.1. Introduction (p. 155) | html | pdf |
- 8.1.2. The physics of SR (p. 155) | html | pdf |
- 8.1.3. Insertion devices (IDs) (pp. 155-156) | html | pdf |
- 8.1.4. Beam characteristics delivered at the crystal sample (pp. 156-158) | html | pdf |
- 8.1.5. Evolution of SR machines and experiments (pp. 158-161) | html | pdf |
- 8.1.5.1. First-generation SR machines (pp. 158-159) | html | pdf |
- 8.1.5.2. Second-generation dedicated machines (p. 160) | html | pdf |
- 8.1.5.3. Third-generation high-brilliance machines (pp. 160-161) | html | pdf |
- 8.1.5.4. New national SR machines (p. 161) | html | pdf |
- 8.1.5.5. X-ray free electron laser (XFEL) (p. 161) | html | pdf |
- 8.1.6. SR instrumentation (pp. 161-162) | html | pdf |
- 8.1.7. SR monochromatic and Laue diffraction geometry (pp. 162-164) | html | pdf |
- 8.1.7.1. Laue geometry: sources, optics, sample reflection bandwidth and spot size (p. 162) | html | pdf |
- 8.1.7.2. Monochromatic SR beams: optical configurations and sample rocking width (pp. 162-164) | html | pdf |
- 8.1.7.2.1. Curved single-crystal monochromator (pp. 162-163) | html | pdf |
- 8.1.7.2.2. Double-crystal monochromator (p. 163) | html | pdf |
- 8.1.7.2.3. Crystal sample rocking width (pp. 163-164) | html | pdf |
- 8.1.8. Scientific utilization of SR in protein crystallography (pp. 164-166) | html | pdf |
- 8.1.8.1. Atomic and ultra high resolution macromolecular crystallography (p. 165) | html | pdf |
- 8.1.8.2. Small crystals (p. 165) | html | pdf |
- 8.1.8.3. Time-resolved macromolecular crystallography (p. 165) | html | pdf |
- 8.1.8.4. Multi-macromolecular complexes (p. 165) | html | pdf |
- 8.1.8.5. Optimized anomalous dispersion (MAD), improved MIR data and `structural genomics' (pp. 165-166) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 8.1.4.1. Internet addresses of SR facilities with macromolecular crystallography beamlines (p. 157) | html | pdf |
- Table 8.1.5.1. A comparison of the parameter list for the 2 GeV SRS, 1997, and the new higher-energy machine for the UK, DIAMOND (p. 160) | html | pdf |
- 8.2. Laue crystallography: time-resolved studies (pp. 167-176) | html | pdf | chapter contents |
- 8.2.1. Introduction (p. 167) | html | pdf |
- 8.2.2. Principles of Laue diffraction (pp. 167-168) | html | pdf |
- 8.2.3. Practical considerations in the Laue technique (pp. 168-170) | html | pdf |
- 8.2.4. The time-resolved experiment (pp. 170-171) | html | pdf |
- 8.2.5. Conclusions (p. 171) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 8.2.2.1. Advantages and disadvantages of the Laue technique (p. 169) | html | pdf |
- Table 8.2.5.1. Time-resolved Laue diffraction experiments (p. 171) | html | pdf |
- Monochromatic data collection
- 9.1. Principles of monochromatic data collection (pp. 177-195) | html | pdf | chapter contents |
- 9.1.1. Introduction (p. 177) | html | pdf |
- 9.1.2. The components of a monochromatic X-ray experiment (p. 177) | html | pdf |
- 9.1.3. Data completeness (p. 177) | html | pdf |
- 9.1.4. X-ray sources (pp. 177-178) | html | pdf |
- 9.1.4.1. Conventional sources (pp. 177-178) | html | pdf |
- 9.1.4.2. Synchrotron storage rings (p. 178) | html | pdf |
- 9.1.5. Goniostat geometry (pp. 178-179) | html | pdf |
- 9.1.5.1. Overview (p. 178) | html | pdf |
- 9.1.5.2. Film methods: the precession and Weissenberg methods (p. 178) | html | pdf |
- 9.1.5.3. Single-counter diffractometers (pp. 178-179) | html | pdf |
- 9.1.5.4. 2D detectors (p. 179) | html | pdf |
- 9.1.6. Basis of the rotation method (pp. 179-183) | html | pdf |
- 9.1.6.1. Rotation geometry (p. 179) | html | pdf |
- 9.1.6.2. Diffraction pattern at a single orientation: the `still' image (pp. 179-180) | html | pdf |
- 9.1.6.3. Rocking curve: crystal mosaicity and beam divergence (p. 180) | html | pdf |
- 9.1.6.4. Rotation images and lunes (pp. 180-181) | html | pdf |
- 9.1.6.5. Partially and fully recorded reflections (p. 181) | html | pdf |
- 9.1.6.6. The width of the rotation range per image: fine φ slicing (pp. 181-182) | html | pdf |
- 9.1.6.7. Wide slicing (pp. 182-183) | html | pdf |
- 9.1.6.8. The Weissenberg camera (p. 183) | html | pdf |
- 9.1.7. Rotation method: geometrical completeness (pp. 183-188) | html | pdf |
- 9.1.7.1. Total rotation range for non-anomalous data (pp. 183-186) | html | pdf |
- 9.1.7.2. Total rotation range for anomalous-dispersion data (p. 186) | html | pdf |
- 9.1.7.3. Blind region (pp. 186-187) | html | pdf |
- 9.1.7.4. Alternative indexing (pp. 187-188) | html | pdf |
- 9.1.8. Crystal-to-detector distance (p. 188) | html | pdf |
- 9.1.9. Wavelength (pp. 188-189) | html | pdf |
- 9.1.10. Lysozyme as an example (pp. 189-190) | html | pdf |
- 9.1.11. Rotation method: qualitative factors (pp. 190-191) | html | pdf |
- 9.1.11.1. Inspection of reflection profiles (p. 190) | html | pdf |
- 9.1.11.2. Exposure time (p. 190) | html | pdf |
- 9.1.11.3. Overloads (pp. 190-191) | html | pdf |
- 9.1.11.4. R factor, I/σ(I) ratio and estimated uncertainties (p. 191) | html | pdf |
- 9.1.12. Radiation damage (pp. 191-192) | html | pdf |
- 9.1.12.1. Historical perspective (pp. 191-192) | html | pdf |
- 9.1.12.2. Cryogenic freezing (p. 192) | html | pdf |
- 9.1.12.3. Ultra high intensity SR sources (p. 192) | html | pdf |
- 9.1.13. Relating data collection to the problem in hand (pp. 192-194) | html | pdf |
- 9.1.13.1. Isomorphous-anomalous derivatives (pp. 192-193) | html | pdf |
- 9.1.13.2. Anomalous scattering, MAD and SAD (p. 193) | html | pdf |
- 9.1.13.3. Molecular replacement (p. 193) | html | pdf |
- 9.1.13.4. Definitive data on relevant biological structures (p. 193) | html | pdf |
- 9.1.13.5. A series of mutant or complex structures (pp. 193-194) | html | pdf |
- 9.1.13.6. Atomic resolution applications (p. 194) | html | pdf |
- 9.1.14. The importance of low-resolution data (p. 194) | html | pdf |
- 9.1.15. Data quality over the whole resolution range (p. 194) | html | pdf |
- 9.1.16. Final remarks (pp. 194-195) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.1.1.1. Size of the unit cell and number of reflections (p. 177) | html | pdf |
- Table 9.1.7.1. Standard choice of asymmetric unit in reciprocal space for different point groups from the CCP4 program suite (p. 184) | html | pdf |
- Table 9.1.7.2. Rotation range (°) required in different crystal classes (p. 186) | html | pdf |
- Table 9.1.7.3. Space groups with alternative, non-equivalent indexing schemes (p. 188) | html | pdf |
- Cryocrystallography
- 10.1. Introduction to cryocrystallography (pp. 197-201) | html | pdf | chapter contents |
- 10.1.1. Utility of low-temperature data collection (p. 197) | html | pdf |
- 10.1.1.1. Prevention of radiation damage (p. 197) | html | pdf |
- 10.1.1.2. Mechanical stability of the crystal mount (p. 197) | html | pdf |
- 10.1.1.3. Effect on resolution (p. 197) | html | pdf |
- 10.1.2. Cooling of biocrystals (pp. 197-199) | html | pdf |
- 10.1.2.1. Physical chemistry of biocrystals (pp. 197-198) | html | pdf |
- 10.1.2.2. Internal ice or phase transition (p. 198) | html | pdf |
- 10.1.2.3. Removal of the solvent layer (p. 198) | html | pdf |
- 10.1.2.4. Cooling rates (pp. 198-199) | html | pdf |
- 10.1.3. Principles of cooling equipment (p. 199) | html | pdf |
- 10.1.3.1. Cold gas supply (p. 199) | html | pdf |
- 10.1.3.2. Frost prevention (p. 199) | html | pdf |
- 10.1.4. Operational considerations (pp. 199-201) | html | pdf |
- 10.1.4.1. Dual-stream instruments (pp. 199-200) | html | pdf |
- 10.1.4.2. Electrically heated nozzle (pp. 200-201) | html | pdf |
- 10.1.4.3. Temperature calibration (p. 201) | html | pdf |
- 10.1.4.4. Transfer of the crystal to the diffractometer (p. 201) | html | pdf |
- 10.1.5. Concluding note (p. 201) | html | pdf |
- References
| html | pdf |
- Figures
- 10.2. Cryocrystallography techniques and devices (pp. 202-208) | html | pdf | chapter contents |
- 10.2.1. Introduction (p. 202) | html | pdf |
- 10.2.2. Crystal preparation (pp. 202-203) | html | pdf |
- 10.2.3. Crystal mounting (pp. 203-204) | html | pdf |
- 10.2.4. Flash cooling (pp. 205-206) | html | pdf |
- 10.2.5. Transfer and storage (pp. 206-207) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 10.2.2.1. List of cryoprotectants used successfully for flash cooling macromolecular crystals (p. 202) | html | pdf |
- Table 10.2.2.2. Methods for introducing the cryoprotectants needed for flash cooling (p. 202) | html | pdf |
- Data processing
- 11.1. Automatic indexing of oscillation images (pp. 209-211) | html | pdf | chapter contents |
- 11.1.1. Introduction (p. 209) | html | pdf |
- 11.1.2. The crystal orientation matrix (p. 209) | html | pdf |
- 11.1.3. Fourier analysis of the reciprocal-lattice vector distribution when projected onto a chosen direction (pp. 209-210) | html | pdf |
- 11.1.4. Exploring all possible directions to find a good set of basis vectors (p. 210) | html | pdf |
- 11.1.5. The program (p. 211) | html | pdf |
- References
| html | pdf |
- Figures
- 11.2. Integration of macromolecular diffraction data (pp. 212-217) | html | pdf | chapter contents |
- 11.2.1. Introduction (p. 212) | html | pdf |
- 11.2.2. Prerequisites for accurate integration (p. 212) | html | pdf |
- 11.2.2.1. Crystal parameters (p. 212) | html | pdf |
- 11.2.2.2. Detector parameters (p. 212) | html | pdf |
- 11.2.3. Methods of integration (p. 212) | html | pdf |
- 11.2.4. The measurement box (pp. 212-213) | html | pdf |
- 11.2.5. Integration by simple summation (pp. 213-214) | html | pdf |
- 11.2.5.1. Determination of the best background plane (p. 213) | html | pdf |
- 11.2.5.1.1. Outlier rejection (p. 213) | html | pdf |
- 11.2.5.2. Evaluating the integrated intensity and standard deviation (pp. 213-214) | html | pdf |
- 11.2.5.3. The effect of instrument or detector errors (p. 214) | html | pdf |
- 11.2.6. Integration by profile fitting (pp. 214-217) | html | pdf |
- 11.2.6.1. Forming the standard profiles (pp. 214-215) | html | pdf |
- 11.2.6.2. Evaluation of the profile-fitted intensity (p. 215) | html | pdf |
- 11.2.6.3. Modifications for very close spots (pp. 215-216) | html | pdf |
- 11.2.6.4. Profile fitting very strong reflections (p. 216) | html | pdf |
- 11.2.6.5. Profile fitting very weak reflections (p. 216) | html | pdf |
- 11.2.6.6. Improvement provided by profile fitting weak reflections (p. 216) | html | pdf |
- 11.2.6.7. Other benefits of profile fitting (pp. 216-217) | html | pdf |
- 11.2.6.7.1. Incompletely resolved spots (p. 216) | html | pdf |
- 11.2.6.7.2. Elimination of peak pixel outliers (p. 216) | html | pdf |
- 11.2.6.7.3. Estimation of overloaded reflections (pp. 216-217) | html | pdf |
- 11.2.6.8. Profile fitting partially recorded reflections (p. 217) | html | pdf |
- 11.2.6.9. Systematic errors in profile-fitted intensities (p. 217) | html | pdf |
- References
| html | pdf |
- Figures
- 11.3. Integration, scaling, space-group assignment and post refinement (pp. 218-225) | html | pdf | chapter contents |
- 11.3.1. Introduction (p. 218) | html | pdf |
- 11.3.2. Modelling rotation images (pp. 218-221) | html | pdf |
- 11.3.2.1. Coordinate systems and parameters (p. 218) | html | pdf |
- 11.3.2.2. Spot prediction (pp. 218-219) | html | pdf |
- 11.3.2.3. Standard spot shape (p. 219) | html | pdf |
- 11.3.2.4. Spot centroids and partiality (p. 219) | html | pdf |
- 11.3.2.5. Localizing diffraction spots (pp. 219-220) | html | pdf |
- 11.3.2.6. Basis extraction (p. 220) | html | pdf |
- 11.3.2.7. Indexing (p. 220) | html | pdf |
- 11.3.2.8. Refinement (pp. 220-221) | html | pdf |
- 11.3.3. Integration (pp. 221-222) | html | pdf |
- 11.3.3.1. Spot extraction (p. 221) | html | pdf |
- 11.3.3.2. Background (pp. 221-222) | html | pdf |
- 11.3.3.3. Standard profiles (p. 222) | html | pdf |
- 11.3.3.4. Intensity estimation (p. 222) | html | pdf |
- 11.3.4. Scaling (pp. 222-223) | html | pdf |
- 11.3.5. Post refinement (pp. 223-224) | html | pdf |
- 11.3.6. Space-group assignment (pp. 224-225) | html | pdf |
- 11.3.6.1. Determination of the Bravais lattice (p. 224) | html | pdf |
- 11.3.6.2. Finding possible space groups (pp. 224-225) | html | pdf |
- References
| html | pdf |
- Tables
- Table 11.3.6.1. Rating of lattice types implied by a given reduced cell (p. 225) | html | pdf |
- 11.4. DENZO and SCALEPACK (pp. 226-235) | html | pdf | chapter contents |
- 11.4.1. Introduction (p. 226) | html | pdf |
- 11.4.2. Diffraction from a perfect crystal lattice (pp. 226-227) | html | pdf |
- 11.4.3. Autoindexing (pp. 227-228) | html | pdf |
- 11.4.3.1. Lattice symmetry (p. 227) | html | pdf |
- 11.4.3.2. Lattice pseudosymmetry (p. 227) | html | pdf |
- 11.4.3.3. Data-collection requirements (pp. 227-228) | html | pdf |
- 11.4.3.4. Misindexing (p. 228) | html | pdf |
- 11.4.3.5. Twins (p. 228) | html | pdf |
- 11.4.4. Coordinate systems (pp. 228-229) | html | pdf |
- 11.4.4.1. Beam–gravity (p. 228) | html | pdf |
- 11.4.4.2. Data (p. 228) | html | pdf |
- 11.4.4.3. Beam–spindle (p. 228) | html | pdf |
- 11.4.4.4. Beam–2θ (pp. 228-229) | html | pdf |
- 11.4.5. Experimental assumptions (pp. 229-231) | html | pdf |
- 11.4.5.1. Crystal diffraction (p. 229) | html | pdf |
- 11.4.5.2. Data model (p. 229) | html | pdf |
- 11.4.5.3. Data-model refinement (pp. 229-230) | html | pdf |
- 11.4.5.4. Correlation between parameters (p. 230) | html | pdf |
- 11.4.5.5. Single- and multiframe refinement (p. 230) | html | pdf |
- 11.4.5.6. Active area (p. 230) | html | pdf |
- 11.4.5.7. Flood field (p. 230) | html | pdf |
- 11.4.5.8. Absolute configuration (p. 230) | html | pdf |
- 11.4.5.9. Correcting diffraction images (p. 230) | html | pdf |
- 11.4.5.10. Detector goniostat (pp. 230-231) | html | pdf |
- 11.4.5.11. Crystal goniostat (p. 231) | html | pdf |
- 11.4.5.12. Crystal orthogonalization convention (p. 231) | html | pdf |
- 11.4.5.13. Refinement and calibration (p. 231) | html | pdf |
- 11.4.6. Prediction of the diffraction pattern (pp. 231-232) | html | pdf |
- 11.4.6.1. Refinement of crystal and detector parameters (p. 232) | html | pdf |
- 11.4.6.2. Bragg's law for non-ideal conditions: mosaicity (p. 232) | html | pdf |
- 11.4.6.3. Detector distortions (p. 232) | html | pdf |
- 11.4.7. Detector diagnostics (p. 233) | html | pdf |
- 11.4.8. Multiplicative corrections (scaling) (p. 233) | html | pdf |
- 11.4.8.1. Polarization (p. 233) | html | pdf |
- 11.4.9. Global refinement or post refinement (p. 233) | html | pdf |
- 11.4.10. Graphical command centre (pp. 233-235) | html | pdf |
- 11.4.11. Final note (p. 235) | html | pdf |
- References
| html | pdf |
- Figures
- 11.5. The use of partially recorded reflections for post refinement, scaling and averaging X-ray diffraction data (pp. 236-245) | html | pdf | chapter contents |
- 11.5.1. Introduction (p. 236) | html | pdf |
- 11.5.2. Generalization of the Hamilton, Rollett and Sparks equations to take into account partial reflections (pp. 236-237) | html | pdf |
- 11.5.3. Selection of reflections useful for scaling (p. 237) | html | pdf |
- 11.5.4. Restraints and constraints (p. 237) | html | pdf |
- 11.5.5. Generalization of the procedure for averaging reflection intensities (p. 238) | html | pdf |
- 11.5.6. Estimating the quality of data scaling and averaging (p. 238) | html | pdf |
- 11.5.7. Experimental results (pp. 238-241) | html | pdf |
- 11.5.7.1. Variation of scale factors versus frame number (pp. 238-239) | html | pdf |
- 11.5.7.2. R factor as a function of `sum-of-partialities' (method 1) (p. 239) | html | pdf |
- 11.5.7.3. Statistics for rejecting reflections and data quality as a function of frame number (p. 240) | html | pdf |
- 11.5.7.4. Observed versus calculated partiality (p. 240) | html | pdf |
- 11.5.7.5. Anisotropic mosaicity (p. 240) | html | pdf |
- 11.5.7.6. Anomalous dispersion (p. 241) | html | pdf |
- 11.5.8. Conclusions (p. 241) | html | pdf |
- Appendix 11.5.1. Partiality model (Rossmann, 1979; Rossmann et al., 1979) (pp. 241-242) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 11.5.3.1. Hierarchy of criteria for selecting reflections for scaling and averaging procedures (p. 237) | html | pdf |
- Table A11.5.1.1. Calculation of the degree of penetration of the Ewald sphere, q (p. 242) | html | pdf |
- Isomorphous replacement
- 12.1. The preparation of heavy-atom derivatives of protein crystals for use in multiple isomorphous replacement and anomalous scattering (pp. 247-255) | html | pdf | chapter contents |
- 12.1.1. Introduction (p. 247) | html | pdf |
- 12.1.2. Heavy-atom data bank (pp. 247-248) | html | pdf |
- 12.1.3. Properties of heavy-atom compounds and their complexes (pp. 248-250) | html | pdf |
- 12.1.3.1. Stability (p. 248) | html | pdf |
- 12.1.3.2. Lability (p. 248) | html | pdf |
- 12.1.3.3. Oxidation state of metal ions in protein crystals (p. 248) | html | pdf |
- 12.1.3.4. Effect of pH (pp. 248-249) | html | pdf |
- 12.1.3.5. Effect of precipitants and buffers on heavy-atom binding (p. 249) | html | pdf |
- 12.1.3.6. Solubility of heavy-atom compounds (p. 249) | html | pdf |
- 12.1.3.7. Effect of concentration, time of soak and temperature on heavy-atom binding (p. 250) | html | pdf |
- 12.1.4. Amino acids as ligands (p. 250) | html | pdf |
- 12.1.5. Protein chemistry of heavy-atom reagents (pp. 250-254) | html | pdf |
- 12.1.5.1. Hard cations (p. 251) | html | pdf |
- 12.1.5.2. Thallium and lead ions (p. 251) | html | pdf |
- 12.1.5.3. B-metal reagents (pp. 251-253) | html | pdf |
- 12.1.5.4. Electrostatic binding of heavy-atom anions (p. 253) | html | pdf |
- 12.1.5.5. Hydrophobic heavy-atom reagents (pp. 253-254) | html | pdf |
- 12.1.5.6. Iodine (p. 254) | html | pdf |
- 12.1.5.7. Polynuclear reagents (p. 254) | html | pdf |
- 12.1.6. Metal-ion replacement in metalloproteins (pp. 254-255) | html | pdf |
- 12.1.7. Analogues of amino acids (p. 255) | html | pdf |
- 12.1.8. Use of the heavy-atom data bank to select derivatives (p. 255) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 12.1.3.1. Useful pH ranges of some heavy-atom reagents derived from the heavy-atom data bank (p. 249) | html | pdf |
- Table 12.1.5.1. The 23 most commonly used heavy-atom reagents (p. 251) | html | pdf |
- Table 12.1.5.2. The five most popular uranium derivatives (p. 251) | html | pdf |
- Table 12.1.5.3. The five most popular mercury derivatives (p. 251) | html | pdf |
- Table 12.1.5.4. The five most popular platinum derivatives (p. 253) | html | pdf |
- 12.2. Locating heavy-atom sites (pp. 256-262) | html | pdf | chapter contents |
- 12.2.1. The origin of the phase problem (pp. 256-257) | html | pdf |
- 12.2.2. The Patterson function (pp. 257-258) | html | pdf |
- 12.2.3. The difference Fourier (p. 258) | html | pdf |
- 12.2.4. Reality (pp. 258-259) | html | pdf |
- 12.2.4.1. Treatment of errors (pp. 258-259) | html | pdf |
- 12.2.4.2. Automated search procedures (p. 259) | html | pdf |
- 12.2.5. Special complications (pp. 259-260) | html | pdf |
- 12.2.5.1. Lack of isomorphism (pp. 259-260) | html | pdf |
- 12.2.5.2. Space-group problems (p. 260) | html | pdf |
- 12.2.5.3. High levels of substitution; noncrystallographic symmetry (p. 260) | html | pdf |
- References
| html | pdf |
- Figures
- Molecular replacement
- 13.1. Noncrystallographic symmetry (pp. 263-268) | html | pdf | chapter contents |
- 13.1.1. Introduction (p. 263) | html | pdf |
- 13.1.2. Definition of noncrystallographic symmetry (p. 263) | html | pdf |
- 13.1.2.1. Standard noncrystallographic symmetry (p. 263) | html | pdf |
- 13.1.2.2. Generalized noncrystallographic symmetry (p. 263) | html | pdf |
- 13.1.2.3. Exploitation of noncrystallographic symmetry (p. 263) | html | pdf |
- 13.1.3. Use of the Patterson function to interpret noncrystallographic symmetry (pp. 263-265) | html | pdf |
- 13.1.3.1. Rotation operations (pp. 263-264) | html | pdf |
- 13.1.3.2. Translation operations (pp. 264-265) | html | pdf |
- 13.1.4. Interpretation of generalized noncrystallographic symmetry where the molecular structure is partially known (pp. 265-266) | html | pdf |
- 13.1.4.1. The cross-rotation function (p. 265) | html | pdf |
- 13.1.4.2. The cross-translation function (p. 265) | html | pdf |
- 13.1.4.3. Structure determination (pp. 265-266) | html | pdf |
- 13.1.5. The power of noncrystallographic symmetry in structure analysis (pp. 266-268) | html | pdf |
- 13.1.5.1. Relevant parameters: standard case (p. 266) | html | pdf |
- 13.1.5.2. Information gain from ideal noncrystallographic symmetry (pp. 266-267) | html | pdf |
- 13.1.5.3. Information gain in the non-ideal case (p. 267) | html | pdf |
- 13.1.5.4. Relevant parameters: generalized case (p. 267) | html | pdf |
- 13.1.5.5. Noncrystallographic symmetry in atomic coordinate refinement (pp. 267-268) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 13.1.2.1. Noncrystallographic symmetry in crystals (p. 263) | html | pdf |
- Table 13.1.4.1. Structure determination using noncrystallographic symmetry (p. 265) | html | pdf |
- 13.2. Rotation functions (pp. 269-274) | html | pdf | chapter contents |
- 13.2.1. Overview (p. 269) | html | pdf |
- 13.2.2. Rotations in three-dimensional Euclidean space (pp. 269-270) | html | pdf |
- 13.2.2.1. The metric of the rotation group (pp. 269-270) | html | pdf |
- 13.2.3. The rotation function (pp. 270-272) | html | pdf |
- 13.2.3.1. Computing the rotation function (p. 271) | html | pdf |
- 13.2.3.2. Plotting and sampling the rotation function (p. 271) | html | pdf |
- 13.2.3.3. Strategies (p. 272) | html | pdf |
- 13.2.3.4. Symmetry properties of the rotation function (p. 272) | html | pdf |
- 13.2.4. The locked rotation function (pp. 272-273) | html | pdf |
- 13.2.5. Other rotation functions (p. 273) | html | pdf |
- 13.2.6. Concluding remarks (p. 273) | html | pdf |
- Appendix 13.2.1. Formulae for the derivation and computation of the fast rotation function (pp. 273-274) | html | pdf |
- A13.2.1.1. Euler parameterization (p. 273) | html | pdf |
- A13.2.1.2. The matrices (pp. 273-274) | html | pdf |
- A13.2.1.3. Spherical harmonics (p. 274) | html | pdf |
- A13.2.1.4. Spherical Bessel functions (p. 274) | html | pdf |
- A13.2.1.5. Expansion of (p. 274) | html | pdf |
- A13.2.1.6. Expansion of the interference function (p. 274) | html | pdf |
- References
| html | pdf |
- Figures
- 13.3. Translation functions (pp. 275-278) | html | pdf | chapter contents |
- 13.3.1. Introduction (p. 275) | html | pdf |
- 13.3.2. R-factor and correlation-coefficient translation functions (pp. 275-276) | html | pdf |
- 13.3.3. Patterson-correlation translation function (p. 276) | html | pdf |
- 13.3.4. Phased translation function (pp. 276-277) | html | pdf |
- 13.3.5. Packing check in translation functions (p. 277) | html | pdf |
- 13.3.6. The unique region of a translation function (the Cheshire group) (p. 277) | html | pdf |
- 13.3.7. Combined molecular replacement (p. 277) | html | pdf |
- 13.3.8. The locked translation function (pp. 277-278) | html | pdf |
- 13.3.9. Miscellaneous translation functions (p. 278) | html | pdf |
- References
| html | pdf |
- 13.4. Noncrystallographic symmetry averaging of electron density for molecular-replacement phase refinement and extension (pp. 279-292) | html | pdf | chapter contents |
- 13.4.1. Introduction (p. 279) | html | pdf |
- 13.4.2. Noncrystallographic symmetry (NCS) (pp. 279-280) | html | pdf |
- 13.4.3. Phase determination using NCS (pp. 280-281) | html | pdf |
- 13.4.4. The p- and h-cells (pp. 281-282) | html | pdf |
- 13.4.5. Combining crystallographic and noncrystallographic symmetry (pp. 282-283) | html | pdf |
- 13.4.5.1. General considerations (p. 282) | html | pdf |
- 13.4.5.2. Averaging with the p-cell (pp. 282-283) | html | pdf |
- 13.4.5.3. Averaging the p-cell and placing the results into the h-cell (p. 283) | html | pdf |
- 13.4.6. Determining the molecular envelope (pp. 283-284) | html | pdf |
- 13.4.7. Finding the averaged density (pp. 284-285) | html | pdf |
- 13.4.8. Interpolation (p. 285) | html | pdf |
- 13.4.9. Combining different crystal forms (p. 285) | html | pdf |
- 13.4.10. Phase extension and refinement of the NCS parameters (pp. 285-286) | html | pdf |
- 13.4.11. Convergence (p. 286) | html | pdf |
- 13.4.12. Ab initio phasing starts (pp. 286-287) | html | pdf |
- 13.4.13. Recent salient examples in low-symmetry cases: multidomain averaging and systematic applications of multiple-crystal-form averaging (pp. 287-288) | html | pdf |
- 13.4.14. Programs (p. 288) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 13.4.7.1. Mean root-mean-square scatter between noncrystallographically related points (p. 284) | html | pdf |
- Anomalous dispersion
- 14.1. Heavy-atom location and phase determination with single-wavelength diffraction data (pp. 293-298) | html | pdf | chapter contents |
- 14.1.1. Introduction (p. 293) | html | pdf |
- 14.1.2. The isomorphous-replacement method (pp. 293-294) | html | pdf |
- 14.1.3. The method of multiple isomorphous replacement (p. 294) | html | pdf |
- 14.1.4. The method of Blow & Crick (pp. 294-295) | html | pdf |
- 14.1.5. The best Fourier (p. 295) | html | pdf |
- 14.1.6. Anomalous scattering (p. 295) | html | pdf |
- 14.1.7. Theory of anomalous scattering (pp. 295-296) | html | pdf |
- 14.1.8. The phase probability distribution for anomalous scattering (p. 296) | html | pdf |
- 14.1.9. Anomalous scattering without isomorphous replacement (p. 297) | html | pdf |
- 14.1.10. Location of heavy-atom sites (p. 297) | html | pdf |
- 14.1.11. Use of anomalous-scattering data in heavy-atom location (p. 297) | html | pdf |
- 14.1.12. Use of difference Fourier syntheses (p. 297) | html | pdf |
- 14.1.13. Single isomorphous replacement (pp. 297-298) | html | pdf |
- References
| html | pdf |
- Figures
- 14.2. MAD and MIR (pp. 299-309) | html | pdf | chapter contents |
- 14.2.1. Multiwavelength anomalous diffraction (pp. 299-303) | html | pdf |
- 14.2.1.1. Anomalous scattering factors (pp. 299-300) | html | pdf |
- 14.2.1.2. A phase equation for MAD (p. 300) | html | pdf |
- 14.2.1.3. Diffraction ratios for estimating the MAD phasing signal (p. 301) | html | pdf |
- 14.2.1.4. Experimental considerations (pp. 301-302) | html | pdf |
- 14.2.1.5. Data handling (p. 302) | html | pdf |
- 14.2.1.6. Approaches to MAD phasing (pp. 302-303) | html | pdf |
- 14.2.1.7. Determination of the anomalous-scatterer partial structure (p. 303) | html | pdf |
- 14.2.1.8. General anomalous-scatterer labels for biological macromolecules (p. 303) | html | pdf |
- 14.2.2. Automated MAD and MIR structure solution (pp. 303-307) | html | pdf |
- 14.2.2.1. Introduction (p. 303) | html | pdf |
- 14.2.2.2. MAD and MIR structure solution (pp. 303-304) | html | pdf |
- 14.2.2.3. Decision making and structure solution (p. 304) | html | pdf |
- 14.2.2.4. The need for rapid refinement and phasing during automated structure solution (p. 304) | html | pdf |
- 14.2.2.5. Conversion of MAD data to a pseudo-SIRAS form (pp. 304-305) | html | pdf |
- 14.2.2.6. Scoring of trial heavy-atom solutions (pp. 305-306) | html | pdf |
- 14.2.2.7. Automated MIR and MAD structure determination (p. 306) | html | pdf |
- 14.2.2.8. Generation of model X-ray data sets (pp. 306-307) | html | pdf |
- 14.2.2.9. Conclusions (p. 307) | html | pdf |
- 14.2.2.10. Software availability (p. 307) | html | pdf |
- References
| html | pdf |
- Figures
- Density modification and phase combination
- 15.1. Phase improvement by iterative density modification (pp. 311-324) | html | pdf | chapter contents |
- 15.1.1. Introduction (p. 311) | html | pdf |
- 15.1.2. Density-modification methods (pp. 311-318) | html | pdf |
- 15.1.2.1. Solvent flattening (pp. 311-314) | html | pdf |
- 15.1.2.1.1. Introduction (pp. 311-313) | html | pdf |
- 15.1.2.1.2. The automated convolution method for molecular-boundary identification (p. 313) | html | pdf |
- 15.1.2.1.3. The solvent-flattening procedure (p. 314) | html | pdf |
- 15.1.2.2. Histogram matching (pp. 314-316) | html | pdf |
- 15.1.2.2.1. Introduction (p. 314) | html | pdf |
- 15.1.2.2.2. The prediction of the ideal histogram (pp. 314-315) | html | pdf |
- 15.1.2.2.3. The process of histogram matching (pp. 315-316) | html | pdf |
- 15.1.2.2.4. Scaling the observed structure-factor amplitudes according to the ideal density histogram (p. 316) | html | pdf |
- 15.1.2.3. Averaging (pp. 316-317) | html | pdf |
- 15.1.2.3.1. Introduction (p. 316) | html | pdf |
- 15.1.2.3.2. The determination of noncrystallographic symmetry (pp. 316-317) | html | pdf |
- 15.1.2.3.3. The refinement of noncrystallographic symmetry (p. 317) | html | pdf |
- 15.1.2.3.4. The averaging of NCS-related molecules (p. 317) | html | pdf |
- 15.1.2.4. Skeletonization (pp. 317-318) | html | pdf |
- 15.1.2.5. Sayre's equation (p. 318) | html | pdf |
- 15.1.2.5.1. Sayre's equation in real and reciprocal space (p. 318) | html | pdf |
- 15.1.2.5.2. The application of Sayre's equation to macromolecules at non-atomic resolution – the θ() curve (p. 318) | html | pdf |
- 15.1.2.6. Atomization (p. 318) | html | pdf |
- 15.1.3. Reciprocal-space interpretation of density modification (p. 319) | html | pdf |
- 15.1.4. Phase combination (pp. 319-321) | html | pdf |
- 15.1.4.1. Sim and weighting (p. 320) | html | pdf |
- 15.1.4.2. Reflection omit (p. 320) | html | pdf |
- 15.1.4.3. The γ correction and solvent flipping (pp. 320-321) | html | pdf |
- 15.1.5. Combining constraints for phase improvement (pp. 321-323) | html | pdf |
- 15.1.5.1. The system of nonlinear constraint equations (p. 321) | html | pdf |
- 15.1.5.2. Least-squares solution to the system of nonlinear constraint equations (pp. 321-323) | html | pdf |
- 15.1.5.2.1. The conjugate-gradient method (p. 322) | html | pdf |
- 15.1.5.2.2. The full-matrix solution (pp. 322-323) | html | pdf |
- 15.1.5.2.3. The diagonal approximation (p. 323) | html | pdf |
- 15.1.6. Example (pp. 323-324) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 15.1.2.1. Constraints used in density modification (p. 312) | html | pdf |
- 15.2. Model phases: probabilities, bias and maps (pp. 325-331) | html | pdf | chapter contents |
- 15.2.1. Introduction (p. 325) | html | pdf |
- 15.2.2. Model bias: importance of phase (p. 325) | html | pdf |
- 15.2.2.1. Parseval's theorem (p. 325) | html | pdf |
- 15.2.3. Structure-factor probability relationships (pp. 325-327) | html | pdf |
- 15.2.3.1. Wilson and Sim structure-factor distributions in P1 (pp. 325-326) | html | pdf |
- 15.2.3.2. Probability distributions for variable coordinate errors (p. 326) | html | pdf |
- 15.2.3.3. General treatment of the structure-factor distribution (pp. 326-327) | html | pdf |
- 15.2.3.4. Estimating (p. 327) | html | pdf |
- 15.2.4. Figure-of-merit weighting for model phases (p. 327) | html | pdf |
- 15.2.5. Map coefficients to reduce model bias (pp. 327-328) | html | pdf |
- 15.2.5.1. Model bias in figure-of-merit weighted maps (pp. 327-328) | html | pdf |
- 15.2.5.2. Model bias in combined phase maps (p. 328) | html | pdf |
- 15.2.6. Estimation of overall coordinate error (p. 328) | html | pdf |
- 15.2.7. Difference-map coefficients (p. 328) | html | pdf |
- 15.2.8. Refinement bias (pp. 328-329) | html | pdf |
- 15.2.9. Maximum-likelihood structure refinement (p. 329) | html | pdf |
- References
| html | pdf |
- Figures
- Direct methods
- 16.1. Ab initio phasing (pp. 333-345) | html | pdf | chapter contents |
- 16.1.1. Introduction (p. 333) | html | pdf |
- 16.1.2. Normalized structure-factor magnitudes (pp. 333-334) | html | pdf |
- 16.1.2.1. SIR differences (p. 334) | html | pdf |
- 16.1.2.2. SAS differences (p. 334) | html | pdf |
- 16.1.3. Starting the phasing process (pp. 334-335) | html | pdf |
- 16.1.3.1. Structure invariants (p. 334) | html | pdf |
- 16.1.3.2. `Multisolution' methods and trial structures (pp. 334-335) | html | pdf |
- 16.1.4. Reciprocal-space phase refinement or expansion (shaking) (pp. 335-336) | html | pdf |
- 16.1.4.1. The tangent formula (p. 335) | html | pdf |
- 16.1.4.2. The minimal function (p. 335) | html | pdf |
- 16.1.4.3. Parameter shift (pp. 335-336) | html | pdf |
- 16.1.5. Real-space constraints (baking) (p. 336) | html | pdf |
- 16.1.5.1. Simple peak picking (p. 336) | html | pdf |
- 16.1.5.2. Iterative peaklist optimization (p. 336) | html | pdf |
- 16.1.5.3. Random omit maps (p. 336) | html | pdf |
- 16.1.6. Fourier refinement (twice baking) (pp. 336-337) | html | pdf |
- 16.1.7. Computer programs for dual-space phasing (pp. 337-339) | html | pdf |
- 16.1.7.1. Flowchart and program comparison (p. 337) | html | pdf |
- 16.1.7.2. Parameters and procedures (pp. 337-338) | html | pdf |
- 16.1.7.3. Recognizing solutions (pp. 338-339) | html | pdf |
- 16.1.8. Applying dual-space programs successfully (pp. 339-344) | html | pdf |
- 16.1.8.1. Utilizing Pattersons for better starts (p. 340) | html | pdf |
- 16.1.8.2. Avoiding false minima (pp. 340-341) | html | pdf |
- 16.1.8.3. Data resolution and completeness (p. 341) | html | pdf |
- 16.1.8.4. Choosing a refinement strategy (pp. 342-343) | html | pdf |
- 16.1.8.5. Expansion to P1 (p. 343) | html | pdf |
- 16.1.8.6. Substructure applications (pp. 343-344) | html | pdf |
- 16.1.9. Extending the power of direct methods (pp. 344-345) | html | pdf |
- 16.1.9.1. Integration with isomorphous replacement (p. 344) | html | pdf |
- 16.1.9.2. Integration with anomalous dispersion (pp. 344-345) | html | pdf |
- 16.1.9.3. Integration with multiple-beam diffraction (p. 345) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 16.1.2.1. Theoretical values pertaining to 's (p. 334) | html | pdf |
- Table 16.1.7.1. Recommended parameter values for the SnB program (p. 338) | html | pdf |
- Table 16.1.8.1. Some large structures solved by the Shake-and-Bake method (p. 339) | html | pdf |
- Table 16.1.8.2. Overall success rates for full structure solution for hirustasin using different two-atom search vectors chosen from the Patterson peak list (p. 340) | html | pdf |
- Table 16.1.8.3. Success rates for three P1 structures illustrate the importance of using complete data to the highest possible resolution (p. 342) | html | pdf |
- Table 16.1.8.4. Improving success rates by `completing' the vancomycin data (p. 342) | html | pdf |
- 16.2. The maximum-entropy method (pp. 346-351) | html | pdf | chapter contents |
- 16.2.1. Introduction (p. 346) | html | pdf |
- 16.2.2. The maximum-entropy principle in a general context (pp. 346-348) | html | pdf |
- 16.2.2.1. Sources of random symbols and the notion of source entropy (p. 346) | html | pdf |
- 16.2.2.2. The meaning of entropy: Shannon's theorems (p. 346) | html | pdf |
- 16.2.2.3. Jaynes' maximum-entropy principle (pp. 346-347) | html | pdf |
- 16.2.2.4. Jaynes' maximum-entropy formalism (pp. 347-348) | html | pdf |
- 16.2.3. Adaptation to crystallography (p. 348) | html | pdf |
- 16.2.3.1. The random-atom model (p. 348) | html | pdf |
- 16.2.3.2. Conventional direct methods and their limitations (p. 348) | html | pdf |
- 16.2.3.3. The notion of recentring and the maximum-entropy criterion (p. 348) | html | pdf |
- 16.2.3.4. The crystallographic maximum-entropy formalism (p. 348) | html | pdf |
- 16.2.3.5. Connection with the saddlepoint method (p. 348) | html | pdf |
- References
| html | pdf |
- Model building and computer graphics
- 17.2. Molecular graphics and animation (pp. 357-368) | html | pdf | chapter contents |
- 17.2.1. Introduction (p. 357) | html | pdf |
- 17.2.2. Background – the evolution of molecular graphics hardware and software (pp. 357-358) | html | pdf |
- 17.2.3. Representation and visualization of molecular data and models (pp. 358-363) | html | pdf |
- 17.2.3.1. Geometric representation (pp. 359-360) | html | pdf |
- 17.2.3.2. Volumetric representation (pp. 360-362) | html | pdf |
- 17.2.3.3. Information visualization (pp. 362-363) | html | pdf |
- 17.2.4. Presentation graphics (pp. 363-365) | html | pdf |
- 17.2.4.1. Illustration (pp. 363-364) | html | pdf |
- 17.2.4.2. Animation (pp. 364-365) | html | pdf |
- 17.2.4.3. The return of physical models (p. 365) | html | pdf |
- 17.2.5. Looking ahead (pp. 365-366) | html | pdf |
- References
| html | pdf |
- Figures
- Refinement
- 18.1. Introduction to refinement (pp. 369-374) | html | pdf | chapter contents |
- 18.1.1. Overview (p. 369) | html | pdf |
- 18.1.2. Background (p. 369) | html | pdf |
- 18.1.3. Objectives (p. 369) | html | pdf |
- 18.1.4. Least squares and maximum likelihood (pp. 369-370) | html | pdf |
- 18.1.5. Optimization (p. 370) | html | pdf |
- 18.1.6. Data (p. 370) | html | pdf |
- 18.1.7. Models (pp. 370-372) | html | pdf |
- 18.1.8. Optimization methods (pp. 372-373) | html | pdf |
- 18.1.8.1. Solving the refinement equations (p. 372) | html | pdf |
- 18.1.8.2. Normal equations (p. 372) | html | pdf |
- 18.1.8.3. Choice of optimization method (p. 373) | html | pdf |
- 18.1.8.4. Singularity in refinement (p. 373) | html | pdf |
- 18.1.9. Evaluation of the model (pp. 373-374) | html | pdf |
- 18.1.9.1. Examination of outliers in the model (p. 373) | html | pdf |
- 18.1.9.2. Examination of model electron density (pp. 373-374) | html | pdf |
- 18.1.9.3. R and Rfree (p. 374) | html | pdf |
- 18.1.10. Conclusion (p. 374) | html | pdf |
- References
| html | pdf |
- 18.2. Enhanced macromolecular refinement by simulated annealing (pp. 375-381) | html | pdf | chapter contents |
- 18.2.1. Introduction (p. 375) | html | pdf |
- 18.2.2. Cross validation (p. 375) | html | pdf |
- 18.2.3. The target function (pp. 375-377) | html | pdf |
- 18.2.3.1. X-ray diffraction data versus model (pp. 376-377) | html | pdf |
- 18.2.3.2. A priori chemical information (p. 377) | html | pdf |
- 18.2.4. Searching conformational space (pp. 377-379) | html | pdf |
- 18.2.4.1. Molecular dynamics (p. 378) | html | pdf |
- 18.2.4.2. Temperature control (p. 378) | html | pdf |
- 18.2.4.3. Annealing schedules (pp. 378-379) | html | pdf |
- 18.2.4.4. An intuitive explanation of simulated annealing (p. 379) | html | pdf |
- 18.2.5. Examples (pp. 379-380) | html | pdf |
- 18.2.6. Multi-start refinement and structure-factor averaging (p. 380) | html | pdf |
- 18.2.7. Ensemble models (p. 380) | html | pdf |
- 18.2.8. Conclusions (p. 381) | html | pdf |
- References
| html | pdf |
- Figures
- 18.3. Structure quality and target parameters (pp. 382-392) | html | pdf | chapter contents |
- 18.3.1. Purpose of restraints (p. 382) | html | pdf |
- 18.3.1.1. Utility of restraints: protein/special geometries (p. 382) | html | pdf |
- 18.3.1.2. Risk of restraints: bias, lack of cross validation (p. 382) | html | pdf |
- 18.3.2. Formulation of refinement restraints (pp. 382-392) | html | pdf |
- 18.3.2.1. Choice of properties for restraint (p. 383) | html | pdf |
- 18.3.2.2. Simple derivation of force constants from parameter distributions (pp. 383-384) | html | pdf |
- 18.3.2.2.1. Clustering (p. 383) | html | pdf |
- 18.3.2.2.2. Treatment of outliers (pp. 383-384) | html | pdf |
- 18.3.2.3. Bonds and angles (pp. 384-390) | html | pdf |
- 18.3.2.3.1. Peptide parameters: proline, glycine, alanine and CB substitution (p. 384) | html | pdf |
- 18.3.2.3.2. Aromatic residues: tryptophan, phenylalanine, tyrosine, histidine (p. 384) | html | pdf |
- 18.3.2.3.3. Aliphatic residues: leucine, isoleucine, valine (p. 384) | html | pdf |
- 18.3.2.3.4. Neutral polar residues: serine, threonine, glutamine, asparagine (p. 384) | html | pdf |
- 18.3.2.3.5. Acidic residues: glutamate, aspartate (pp. 384-387) | html | pdf |
- 18.3.2.3.6. Basic residues: arginine, lysine (p. 387) | html | pdf |
- 18.3.2.3.7. Sulfur-containing residues: methionine, cysteine, disulfides (pp. 387-390) | html | pdf |
- 18.3.2.4. Planarity restraints (p. 390) | html | pdf |
- 18.3.2.5. Torsion angles (pp. 390-391) | html | pdf |
- 18.3.2.6. Non-bonded interactions (p. 391) | html | pdf |
- 18.3.2.7. Effects of hydrogen atoms in parameterization (p. 391) | html | pdf |
- 18.3.2.8. Special geometries: cofactors, ligands, metals etc. (p. 391) | html | pdf |
- 18.3.2.9. Addition of tailored information sources (p. 392) | html | pdf |
- 18.3.3. Strategy of application during building/refinement (p. 392) | html | pdf |
- 18.3.3.1. Confidence in restraints versus information from diffraction (p. 392) | html | pdf |
- 18.3.4. Future perspectives (p. 392) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.3.2.1. Bond lengths of standard amino-acid side chains (pp. 385-386) | html | pdf |
- Table 18.3.2.2. Bond angles of standard amino-acid side chains (pp. 388-390) | html | pdf |
- Table 18.3.2.3. Bond lengths (Å) and angles (°) of peptide backbone fragments (p. 391) | html | pdf |
- 18.4. Refinement at atomic resolution (pp. 393-402) | html | pdf | chapter contents |
- 18.4.1. Definition of atomic resolution (pp. 393-395) | html | pdf |
- 18.4.1.1. Ab initio phasing and atomic resolution (p. 395) | html | pdf |
- 18.4.2. Data (p. 395) | html | pdf |
- 18.4.2.1. Data quality (p. 395) | html | pdf |
- 18.4.2.2. Anisotropic scaling (p. 395) | html | pdf |
- 18.4.3. Computational algorithms and strategies (p. 396) | html | pdf |
- 18.4.3.1. Classical least-squares refinement of small molecules (p. 396) | html | pdf |
- 18.4.3.2. Least-squares refinement of large structures (p. 396) | html | pdf |
- 18.4.3.3. Fast Fourier transform (p. 396) | html | pdf |
- 18.4.3.4. Maximum likelihood (p. 396) | html | pdf |
- 18.4.3.5. Computer power (p. 396) | html | pdf |
- 18.4.4. Computational options and tactics (pp. 396-398) | html | pdf |
- 18.4.4.1. Use of F or F2 (pp. 396-397) | html | pdf |
- 18.4.4.2. Restraints and/or constraints on coordinates and ADPs (p. 397) | html | pdf |
- 18.4.4.3. Partial occupancy (p. 397) | html | pdf |
- 18.4.4.4. Validation of extra parameters during the refinement process (pp. 397-398) | html | pdf |
- 18.4.4.5. Practical strategies (p. 398) | html | pdf |
- 18.4.5. Features in the refined model (pp. 398-401) | html | pdf |
- 18.4.5.1. Hydrogen atoms (pp. 398-399) | html | pdf |
- 18.4.5.2. Anisotropic atomic displacement parameters (p. 399) | html | pdf |
- 18.4.5.3. Alternative conformations (p. 399) | html | pdf |
- 18.4.5.4. Ordered solvent water (pp. 399-400) | html | pdf |
- 18.4.5.5. Automatic location of water sites (p. 400) | html | pdf |
- 18.4.5.6. Bulk solvent and the low-resolution reflections (pp. 400-401) | html | pdf |
- 18.4.5.7. Metal ions and other ligands in the solvent (p. 401) | html | pdf |
- 18.4.5.8. Deformation density (p. 401) | html | pdf |
- 18.4.6. Quality assessment of the model (p. 401) | html | pdf |
- 18.4.7. Relation to biological chemistry (pp. 401-402) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.4.1.1. The parameters of an atomic model (p. 393) | html | pdf |
- Table 18.4.1.2. Features which can be seen in the electron density at different resolutions (p. 394) | html | pdf |
- 18.5. Coordinate uncertainty (pp. 403-418) | html | pdf | chapter contents |
- 18.5.1. Introduction (p. 403) | html | pdf |
- 18.5.1.1. Background (p. 403) | html | pdf |
- 18.5.1.2. Accuracy and precision (p. 403) | html | pdf |
- 18.5.1.3. Effect of atomic displacement parameters (or `temperature factors') (p. 403) | html | pdf |
- 18.5.2. The least-squares method (pp. 404-405) | html | pdf |
- 18.5.2.1. The normal equations (p. 404) | html | pdf |
- 18.5.2.2. Weights (p. 404) | html | pdf |
- 18.5.2.3. Statistical descriptors and goodness of fit (pp. 404-405) | html | pdf |
- 18.5.3. Restrained refinement (pp. 405-406) | html | pdf |
- 18.5.3.1. Residual function (p. 405) | html | pdf |
- 18.5.3.2. A very simple protein model (pp. 405-406) | html | pdf |
- 18.5.3.3. Relative weighting of diffraction and restraint terms (p. 406) | html | pdf |
- 18.5.4. Two examples of full-matrix inversion (pp. 406-409) | html | pdf |
- 18.5.4.1. Unrestrained and restrained inversions for concanavalin A (pp. 406-408) | html | pdf |
- 18.5.4.2. Unrestrained inversion for an immunoglobulin (p. 408) | html | pdf |
- 18.5.4.3. Comments on restrained refinement (p. 408) | html | pdf |
- 18.5.4.4. Full-matrix estimates of precision (pp. 408-409) | html | pdf |
- 18.5.5. Approximate methods (p. 409) | html | pdf |
- 18.5.5.1. Block calculations (p. 409) | html | pdf |
- 18.5.5.2. The modified Fourier method (p. 409) | html | pdf |
- 18.5.5.3. Application of the modified Fourier method (p. 409) | html | pdf |
- 18.5.6. The diffraction-component precision index (p. 410) | html | pdf |
- 18.5.6.1. Statistical expectation of error dependence (p. 410) | html | pdf |
- 18.5.6.2. A simple error formula (p. 410) | html | pdf |
- 18.5.6.3. Extension for low-resolution structures and use of Rfree (p. 410) | html | pdf |
- 18.5.6.4. Position error (p. 410) | html | pdf |
- 18.5.7. Examples of the diffraction-component precision index (pp. 411-412) | html | pdf |
- 18.5.7.1. Full-matrix comparison with the diffraction-component precision index (p. 411) | html | pdf |
- 18.5.7.2. Further examples of the DPI using R (p. 411) | html | pdf |
- 18.5.7.3. Examples of the DPI using Rfree (pp. 411-412) | html | pdf |
- 18.5.7.4. Comments on the diffraction-component precision index (p. 412) | html | pdf |
- 18.5.8. Luzzati plots (pp. 412-414) | html | pdf |
- 18.5.8.1. Luzzati's theory (pp. 412-413) | html | pdf |
- 18.5.8.2. Statistical reinterpretation of Luzzati plots (pp. 413-414) | html | pdf |
- 18.5.8.3. Comments on Luzzati plots (p. 414) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 18.5.7.1. Comparison of full-matrix with the diffraction-component precision index (DPI) (p. 411) | html | pdf |
- Table 18.5.7.2. Examples of diffraction-component precision indices (DPIs) (p. 411) | html | pdf |
- Table 18.5.7.3. Comparison of DPIs using R and Rfree (p. 412) | html | pdf |
- Table 18.5.8.1. as a function of in the Luzzati model for three-dimensional noncentrosymmetric structures (p. 413) | html | pdf |
- Other experimental techniques
- 19.1. Neutron crystallography: methods and information content (pp. 419-422) | html | pdf | chapter contents |
- 19.1.1. Introduction (p. 419) | html | pdf |
- 19.1.2. Diffraction geometries (p. 419) | html | pdf |
- 19.1.2.1. Quasi-Laue diffractometry (p. 419) | html | pdf |
- 19.1.3. Neutron density maps – information content (pp. 419-420) | html | pdf |
- 19.1.4. Phasing models and evaluation of correctness (p. 420) | html | pdf |
- 19.1.5. Evaluation of correctness (pp. 420-421) | html | pdf |
- 19.1.6. Refinement (p. 421) | html | pdf |
- 19.1.7. D2O − H2O solvent difference maps (pp. 421-422) | html | pdf |
- 19.1.8. Applications of D2O − H2O solvent difference maps (p. 422) | html | pdf |
- 19.1.8.1. Orientation of water molecules (p. 422) | html | pdf |
- 19.1.8.2. H/D exchange (p. 422) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 19.1.1.1. Scattering lengths for atom types (p. 419) | html | pdf |
- 19.2. Electron diffraction of protein crystals (pp. 423-427) | html | pdf | chapter contents |
- 19.2.1. Electron scattering (p. 423) | html | pdf |
- 19.2.2. The electron microscope (p. 423) | html | pdf |
- 19.2.3. Data collection (pp. 423-424) | html | pdf |
- 19.2.3.1. Specimen preparation (p. 423) | html | pdf |
- 19.2.3.2. Radiation damage (p. 424) | html | pdf |
- 19.2.3.3. Other technical factors (p. 424) | html | pdf |
- 19.2.4. Data processing (pp. 425-427) | html | pdf |
- 19.2.4.1. Data sampling (pp. 425-426) | html | pdf |
- 19.2.4.2. Amplitudes and phases (pp. 426-427) | html | pdf |
- 19.2.4.3. 3D map (p. 427) | html | pdf |
- 19.2.4.4. Refinement (p. 427) | html | pdf |
- 19.2.5. Future development (p. 427) | html | pdf |
- References
| html | pdf |
- Figures
- 19.3. Small-angle X-ray scattering (pp. 428-437) | html | pdf | chapter contents |
- 19.3.1. Introduction (p. 428) | html | pdf |
- 19.3.2. Small-angle single-crystal X-ray diffraction studies (pp. 428-429) | html | pdf |
- 19.3.3. Solution X-ray scattering studies (pp. 429-437) | html | pdf |
- 19.3.3.1. Information content of solution scattering (pp. 429-432) | html | pdf |
- 19.3.3.1.1. Solution scattering and crystal structures (pp. 431-432) | html | pdf |
- 19.3.3.1.2. Low-resolution model determination using solution scattering (p. 432) | html | pdf |
- 19.3.3.2. Instrumentation for small-angle X-ray scattering (pp. 432-433) | html | pdf |
- 19.3.3.2.1. Instruments on conventional sources (p. 433) | html | pdf |
- 19.3.3.2.2. Synchrotron instruments (p. 433) | html | pdf |
- 19.3.3.3. Experimental considerations (pp. 434-436) | html | pdf |
- 19.3.3.3.1. Sample preparation (p. 434) | html | pdf |
- 19.3.3.3.2. Sample-handling devices (pp. 434-435) | html | pdf |
- 19.3.3.3.3. Designing experiments (p. 435) | html | pdf |
- 19.3.3.3.4. Data-collection practices (p. 435) | html | pdf |
- 19.3.3.3.5. Data processing and analysis (pp. 435-436) | html | pdf |
- 19.3.3.4. Recent applications of solution X-ray scattering in structural molecular biology (pp. 436-437) | html | pdf |
- 19.3.3.4.1. Studies of proteins in solution that complement high-resolution structures (pp. 436-437) | html | pdf |
- 19.3.3.4.2. Time-resolved studies (p. 437) | html | pdf |
- 19.3.3.4.3. Protein-folding studies (p. 437) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 19.3.3.1. List of commonly used software for solution scattering (p. 436) | html | pdf |
- 19.4. Small-angle neutron scattering (pp. 438-443) | html | pdf | chapter contents |
- 19.4.1. Introduction (p. 438) | html | pdf |
- 19.4.2. Fundamental relationships (pp. 438-439) | html | pdf |
- 19.4.3. Contrast variation (pp. 439-441) | html | pdf |
- 19.4.3.1. Variation of solvent density (pp. 439-440) | html | pdf |
- 19.4.3.2. Variation of internal contrast (p. 440) | html | pdf |
- 19.4.3.3. Relationship of contrasting regions (pp. 440-441) | html | pdf |
- 19.4.3.4. The triple isotopic substitution method (p. 441) | html | pdf |
- 19.4.3.5. Nuclear spin contrast variation (p. 441) | html | pdf |
- 19.4.3.6. Interpretation of small-angle scattering using models (p. 441) | html | pdf |
- 19.4.3.7. Use of forward scattering to measure molecular weights (p. 441) | html | pdf |
- 19.4.4. Distance measurements (p. 442) | html | pdf |
- 19.4.4.1. Theory and background (p. 442) | html | pdf |
- 19.4.4.2. Neutron distance measurements (p. 442) | html | pdf |
- 19.4.4.3. The statistical labelling method (p. 442) | html | pdf |
- 19.4.5. Practical considerations (pp. 442-443) | html | pdf |
- 19.4.5.1. Feasibility (pp. 442-443) | html | pdf |
- 19.4.5.2. Homogeneity and stability (p. 443) | html | pdf |
- 19.4.5.3. Solvent conditions (p. 443) | html | pdf |
- 19.4.6. Examples (p. 443) | html | pdf |
- 19.4.6.1. Contrast variation (p. 443) | html | pdf |
- 19.4.6.2. Contrast matching (p. 443) | html | pdf |
- 19.4.6.3. Spin contrast variation (p. 443) | html | pdf |
- 19.4.6.4. Specific deuteration, combination with X-ray measurements (p. 443) | html | pdf |
- 19.4.6.5. Distance measurements and triangulation (p. 443) | html | pdf |
- References
| html | pdf |
- 19.5. Fibre diffraction (pp. 444-450) | html | pdf | chapter contents |
- 19.5.1. Introduction (p. 444) | html | pdf |
- 19.5.2. Types of fibres (pp. 444-445) | html | pdf |
- 19.5.3. Diffraction by helical molecules (pp. 445-446) | html | pdf |
- 19.5.3.1. Fibre diffraction patterns (p. 445) | html | pdf |
- 19.5.3.2. Helical symmetry (p. 445) | html | pdf |
- 19.5.3.3. Structure factors (p. 445) | html | pdf |
- 19.5.3.4. Fourier–Bessel syntheses (p. 445) | html | pdf |
- 19.5.3.5. Diffracted intensities: noncrystalline fibres (p. 445) | html | pdf |
- 19.5.3.6. Diffracted intensities: polycrystalline fibres (pp. 445-446) | html | pdf |
- 19.5.4. Fibre preparation (p. 446) | html | pdf |
- 19.5.5. Data collection (p. 446) | html | pdf |
- 19.5.6. Data processing (pp. 446-447) | html | pdf |
- 19.5.6.1. Coordinate transformation (p. 446) | html | pdf |
- 19.5.6.2. Intensity correction (p. 446) | html | pdf |
- 19.5.6.3. Background subtraction (pp. 446-447) | html | pdf |
- 19.5.6.4. Integration of crystalline fibre data (p. 447) | html | pdf |
- 19.5.6.5. Integration of continuous data (p. 447) | html | pdf |
- 19.5.7. Determination of structures (pp. 447-449) | html | pdf |
- 19.5.7.1. Initial models: small unit cells (p. 447) | html | pdf |
- 19.5.7.2. Refinement: small unit cells (pp. 447-448) | html | pdf |
- 19.5.7.3. Data-to-parameter ratio (p. 448) | html | pdf |
- 19.5.7.4. Initial models: large unit cells (p. 448) | html | pdf |
- 19.5.7.5. Refinement: large unit cells (p. 448) | html | pdf |
- 19.5.7.6. Difference Fourier methods (pp. 448-449) | html | pdf |
- 19.5.7.7. Evaluation (p. 449) | html | pdf |
- 19.5.8. Structures determined by X-ray fibre diffraction (pp. 449-450) | html | pdf |
- 19.5.8.1. Polypeptides (p. 449) | html | pdf |
- 19.5.8.2. Polynucleotides (p. 449) | html | pdf |
- 19.5.8.3. Polysaccharides (pp. 449-450) | html | pdf |
- 19.5.8.4. Helical viruses and bacteriophages (p. 450) | html | pdf |
- 19.5.8.5. Other large assemblies (p. 450) | html | pdf |
- References
| html | pdf |
- Figures
- 19.6. Electron cryomicroscopy (pp. 451-463) | html | pdf | chapter contents |
- 19.6.1. Abbreviations used (p. 451) | html | pdf |
- 19.6.2. The role of electron microscopy in macromolecular structure determination (pp. 451-452) | html | pdf |
- 19.6.3. Electron scattering and radiation damage (pp. 452-453) | html | pdf |
- 19.6.3.1. Elastic and inelastic scattering (p. 452) | html | pdf |
- 19.6.3.2. Radiation damage (pp. 452-453) | html | pdf |
- 19.6.3.3. Required properties of the illuminating electron beam (p. 453) | html | pdf |
- 19.6.4. Three-dimensional electron cryomicroscopy of macromolecules (pp. 453-463) | html | pdf |
- 19.6.4.1. Overview of conceptual steps (pp. 453-454) | html | pdf |
- 19.6.4.2. Classification of macromolecules (pp. 454-455) | html | pdf |
- 19.6.4.3. Specimen preparation (pp. 455-456) | html | pdf |
- 19.6.4.4. Microscopy (pp. 456-458) | html | pdf |
- 19.6.4.5. Selection and preprocessing of digitized images (pp. 458-459) | html | pdf |
- 19.6.4.6. Image processing and 3D reconstruction (pp. 459-461) | html | pdf |
- 19.6.4.6.1. 2D crystals (pp. 459-460) | html | pdf |
- 19.6.4.6.2. Helical particles (pp. 460-461) | html | pdf |
- 19.6.4.6.3. Icosahedral particles (p. 461) | html | pdf |
- 19.6.4.7. Visualization, modelling and interpretation of results (pp. 461-462) | html | pdf |
- 19.6.4.8. Solving the X-ray phase problem with cryo EM maps (pp. 462-463) | html | pdf |
- 19.6.5. Recent trends (p. 463) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 19.6.4.1. Classification of macromolecules according to periodic order and symmetry (p. 455) | html | pdf |
- Table 19.6.4.2. Methods of three-dimensional image reconstruction (p. 460) | html | pdf |
- 19.7. Nuclear magnetic resonance (NMR) spectroscopy (pp. 464-479) | html | pdf | chapter contents |
- 19.7.1. Complementary roles of NMR in solution and X-ray crystallography in structural biology (p. 464) | html | pdf |
- 19.7.2. A standard protocol for NMR structure determination of proteins and nucleic acids (pp. 464-466) | html | pdf |
- 19.7.3. Combined use of single-crystal X-ray diffraction and solution NMR for structure determination (p. 466) | html | pdf |
- 19.7.4. NMR studies of solvation in solution (p. 466) | html | pdf |
- 19.7.5. NMR studies of rate processes and conformational equilibria in three-dimensional macromolecular structures (pp. 466-467) | html | pdf |
- References
| html | pdf |
- Figures
- Energy calculations and molecular dynamics
- 20.1. Molecular-dynamics simulation of protein crystals: convergence of molecular properties of ubiquitin (pp. 481-488) | html | pdf | chapter contents |
- 20.1.1. Introduction (p. 481) | html | pdf |
- 20.1.2. Methods (pp. 481-482) | html | pdf |
- 20.1.3. Results (pp. 482-488) | html | pdf |
- 20.1.3.1. Energetic properties (p. 482) | html | pdf |
- 20.1.3.2. Structural properties (pp. 482-483) | html | pdf |
- 20.1.3.3. Effect of the translational and rotational fitting procedure (pp. 483-486) | html | pdf |
- 20.1.3.4. Effect of the averaging period (pp. 486-487) | html | pdf |
- 20.1.3.5. Internal motions of the proteins (p. 487) | html | pdf |
- 20.1.3.6. Dihedral-angle fluctuations and transitions (pp. 487-488) | html | pdf |
- 20.1.3.7. Water diffusion (p. 488) | html | pdf |
- 20.1.4. Conclusions (p. 488) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 20.1.3.1. Occurrence of intramolecular hydrogen bonds (%) during the final 1.6 ns of the simulation (pp. 484-485) | html | pdf |
- Table 20.1.3.2. Occurrence of intermolecular hydrogen bonds (%) during the final 1.6 ns of the simulation (p. 485) | html | pdf |
- Table 20.1.3.3. Root-mean-square fluctuations of polypeptide backbone and ψ dihedral angles (°) for the different molecules using different time-averaging periods (p. 488) | html | pdf |
- Table 20.1.3.4. Number of protein-backbone dihedral-angle transitions per 100 ps for the different molecules using different time periods (p. 488) | html | pdf |
- 20.2. Molecular-dynamics simulations of biological macromolecules (pp. 489-495) | html | pdf | chapter contents |
- 20.2.1. Introduction (p. 489) | html | pdf |
- 20.2.2. The simulation method (p. 489) | html | pdf |
- 20.2.3. Potential-energy function (pp. 489-491) | html | pdf |
- 20.2.3.1. Empirical energy (pp. 489-490) | html | pdf |
- 20.2.3.2. Particle mesh Ewald (p. 490) | html | pdf |
- 20.2.3.3. Experimental restraints in the energy function (pp. 490-491) | html | pdf |
- 20.2.4. Empirical parameterization of the force field (p. 491) | html | pdf |
- 20.2.5. Modifications in the force field for structure determination (p. 491) | html | pdf |
- 20.2.6. Internal dynamics and average structures (p. 491) | html | pdf |
- 20.2.7. Assessment of the simulation procedure (p. 492) | html | pdf |
- 20.2.8. Effect of crystallographic atomic resolution on structural stability during molecular dynamics (pp. 492-494) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 20.2.8.1. R.m.s. coordinate differences between crystallographic structures and average MD structures (p. 493) | html | pdf |
- Structure validation
- 21.1. Validation of protein crystal structures (pp. 497-506) | html | pdf | chapter contents |
- 21.1.1. Introduction (p. 497) | html | pdf |
- 21.1.2. Types of error (pp. 497-498) | html | pdf |
- 21.1.3. Detecting outliers (pp. 498-499) | html | pdf |
- 21.1.3.1. Classes of quality indicators (p. 498) | html | pdf |
- 21.1.3.2. Local statistics (pp. 498-499) | html | pdf |
- 21.1.3.3. Global statistics (p. 499) | html | pdf |
- 21.1.4. Fixing errors (p. 499) | html | pdf |
- 21.1.5. Preventing errors (pp. 499-500) | html | pdf |
- 21.1.6. Final model (p. 500) | html | pdf |
- 21.1.7. A compendium of quality criteria (pp. 500-505) | html | pdf |
- 21.1.7.1. Data quality (pp. 500-501) | html | pdf |
- 21.1.7.1.1. Merging R values (pp. 500-501) | html | pdf |
- 21.1.7.1.2. Completeness (p. 501) | html | pdf |
- 21.1.7.1.3. Redundancy (p. 501) | html | pdf |
- 21.1.7.1.4. Signal strength (p. 501) | html | pdf |
- 21.1.7.1.5. Resolution (p. 501) | html | pdf |
- 21.1.7.1.6. Unit-cell parameters (p. 501) | html | pdf |
- 21.1.7.1.7. Symmetry (p. 501) | html | pdf |
- 21.1.7.2. Model quality, coordinates (pp. 501-504) | html | pdf |
- 21.1.7.2.1. Geometry and stereochemistry (pp. 501-502) | html | pdf |
- 21.1.7.2.2. Torsion angles (dihedrals) (pp. 502-503) | html | pdf |
- 21.1.7.2.3. Cα-only models (p. 503) | html | pdf |
- 21.1.7.2.4. Contacts and environments (p. 503) | html | pdf |
- 21.1.7.2.5. Noncrystallographic symmetry (p. 503) | html | pdf |
- 21.1.7.2.6. Solvent molecules (p. 503) | html | pdf |
- 21.1.7.2.7. Miscellaneous (pp. 503-504) | html | pdf |
- 21.1.7.3. Model quality, temperature factors (p. 504) | html | pdf |
- 21.1.7.4. Model versus experimental data (pp. 504-505) | html | pdf |
- 21.1.7.4.1. R values (pp. 504-505) | html | pdf |
- 21.1.7.4.2. Real-space fits (p. 505) | html | pdf |
- 21.1.7.4.3. Coordinate error estimates (p. 505) | html | pdf |
- 21.1.7.4.4. Noncrystallographic symmetry (p. 505) | html | pdf |
- 21.1.7.4.5. Difference density quality (p. 505) | html | pdf |
- 21.1.7.5. Accountancy (p. 505) | html | pdf |
- 21.1.8. Future (p. 506) | html | pdf |
- References
| html | pdf |
- 21.2. Assessing the quality of macromolecular structures (pp. 507-519) | html | pdf | chapter contents |
- 21.2.1. Introduction (p. 507) | html | pdf |
- 21.2.2. Validating the geometric and stereochemical parameters of the model (pp. 507-509) | html | pdf |
- 21.2.2.1. Comparisons against standard values derived from crystals of small molecules (pp. 507-508) | html | pdf |
- 21.2.2.2. Comparisons against standard values derived from surveys of other macromolecules (pp. 508-509) | html | pdf |
- 21.2.2.2.1. Validation of stereochemical and non-bonded parameters (p. 508) | html | pdf |
- 21.2.2.2.2. Validation using knowledge-based interaction potentials and profiles (pp. 508-509) | html | pdf |
- 21.2.2.2.3. Deviations from standard atomic volumes as a quality measure for protein crystal structures (p. 509) | html | pdf |
- 21.2.3. Validation of a model versus experimental data (pp. 509-517) | html | pdf |
- 21.2.3.1. A systematic approach using the SFCHECK software (pp. 510-517) | html | pdf |
- 21.2.3.1.1. Tasks performed by SFCHECK (pp. 510-511) | html | pdf |
- 21.2.3.1.1.1. Treatment of structure-factor data and scaling (pp. 510-511) | html | pdf |
- 21.2.3.1.1.2. Global agreement between the model and experimental data (p. 511) | html | pdf |
- 21.2.3.1.1.3. Estimations of errors in atomic positions (p. 511) | html | pdf |
- 21.2.3.1.1.4. Local agreement between the model and the experimental data (p. 511) | html | pdf |
- 21.2.3.1.2. Evaluation of individual structures (pp. 511-513) | html | pdf |
- 21.2.3.1.3. Quality assessment based on surveys across structures (pp. 513-517) | html | pdf |
- 21.2.3.1.3.1. Assessing the quality of a structure as a whole (pp. 513-514) | html | pdf |
- 21.2.3.1.3.2. Assessing the quality in specific regions of a model (pp. 514-517) | html | pdf |
- 21.2.4. Atomic resolution structures (pp. 517-518) | html | pdf |
- 21.2.5. Concluding remarks (p. 518) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 21.2.3.1. Parameters computed for the analysis of the structure-factor data (p. 511) | html | pdf |
- Table 21.2.3.2. Estimation of errors in atomic coordinates (p. 512) | html | pdf |
- Table 21.2.3.3. Parameters computed by SFCHECK to assess the quality of the model in specific regions (p. 512) | html | pdf |
- 21.3. Detection of errors in protein models (pp. 520-530) | html | pdf | chapter contents |
- 21.3.1. Motivation and introduction (p. 520) | html | pdf |
- 21.3.2. Separating evaluation from refinement (p. 520) | html | pdf |
- 21.3.3. Algorithms for the detection of errors in protein models and the types of errors they detect (pp. 520-521) | html | pdf |
- 21.3.3.1. PROCHECK (pp. 520-521) | html | pdf |
- 21.3.3.2. WHAT IF (p. 521) | html | pdf |
- 21.3.3.3. VERIFY3D (p. 521) | html | pdf |
- 21.3.3.4. ERRAT (p. 521) | html | pdf |
- 21.3.4. Selection of database (p. 521) | html | pdf |
- 21.3.5. Examples: detection of errors in structures (pp. 521-525) | html | pdf |
- 21.3.5.1. Specific examples (pp. 521-524) | html | pdf |
- 21.3.5.2. Survey of old and revised structures (pp. 524-525) | html | pdf |
- 21.3.6. Summary (p. 525) | html | pdf |
- 21.3.7. Availability of software (p. 525) | html | pdf |
- References
| html | pdf |
- Figures
- Molecular geometry and features
- 22.1. Protein surfaces and volumes: measurement and use (pp. 531-545) | html | pdf | chapter contents |
- 22.1.1. Protein geometry: volumes, areas and distances (pp. 531-539) | html | pdf |
- 22.1.1.1. Introduction (p. 531) | html | pdf |
- 22.1.1.2. Definitions of protein volume (pp. 531-533) | html | pdf |
- 22.1.1.2.1. Volume in terms of Voronoi polyhedra: overview (p. 531) | html | pdf |
- 22.1.1.2.2. The basic Voronoi construction (pp. 531-532) | html | pdf |
- 22.1.1.2.2.1. Integrating on a grid (pp. 531-532) | html | pdf |
- 22.1.1.2.2.2. Finding polyhedron vertices (p. 532) | html | pdf |
- 22.1.1.2.2.3. Collecting vertices and calculating volumes (p. 532) | html | pdf |
- 22.1.1.2.3. Adapting Voronoi polyhedra to proteins (pp. 532-533) | html | pdf |
- 22.1.1.2.3.1. Method B and a simplification of it: the ratio method (pp. 532-533) | html | pdf |
- 22.1.1.2.3.2. Vertex error (p. 533) | html | pdf |
- 22.1.1.2.3.3. `Chopping-down' method of finding vertices (p. 533) | html | pdf |
- 22.1.1.2.3.4. Radical-plane method (p. 533) | html | pdf |
- 22.1.1.2.4. Delaunay triangulation (p. 533) | html | pdf |
- 22.1.1.3. Definitions of protein surface (pp. 534-536) | html | pdf |
- 22.1.1.3.1. The problem of the protein surface (p. 534) | html | pdf |
- 22.1.1.3.2. Definitions of surface in terms of Voronoi polyhedra (the convex hull) (p. 534) | html | pdf |
- 22.1.1.3.3. Definitions of surface in terms of a probe sphere (pp. 534-536) | html | pdf |
- 22.1.1.3.3.1. van der Waals surface (VDWS) (p. 535) | html | pdf |
- 22.1.1.3.3.2. Solvent-accessible surface (SAS) (p. 535) | html | pdf |
- 22.1.1.3.3.3. Molecular surface as the sum of the contact and re-entrant surfaces (MS = CS + RS) (p. 535) | html | pdf |
- 22.1.1.3.3.4. Further points (pp. 535-536) | html | pdf |
- 22.1.1.4. Definitions of atomic radii (pp. 536-537) | html | pdf |
- 22.1.1.4.1. van der Waals radii (pp. 536-537) | html | pdf |
- 22.1.1.4.2. The probe radius (p. 537) | html | pdf |
- 22.1.1.5. Application of geometry calculations: the measurement of packing (pp. 537-539) | html | pdf |
- 22.1.1.5.1. Using volume to measure packing efficiency (pp. 537-538) | html | pdf |
- 22.1.1.5.2. The tight packing of the protein core (p. 538) | html | pdf |
- 22.1.1.5.3. Looser packing on the surface (pp. 538-539) | html | pdf |
- 22.1.2. Molecular surfaces: calculations, uses and representations (pp. 539-545) | html | pdf |
- 22.1.2.1. Introduction (pp. 539-540) | html | pdf |
- 22.1.2.1.1. Uses of surface-area calculations (p. 539) | html | pdf |
- 22.1.2.1.2. Molecular, solvent-accessible and occluded surface areas (pp. 539-540) | html | pdf |
- 22.1.2.1.3. Hydration surface (p. 540) | html | pdf |
- 22.1.2.1.4. Hydrophobicity (p. 540) | html | pdf |
- 22.1.2.2. Calculation of surface area and energies of interaction (pp. 540-541) | html | pdf |
- 22.1.2.2.1. Introduction (pp. 540-541) | html | pdf |
- 22.1.2.2.2. Lee & Richards planar slices (p. 541) | html | pdf |
- 22.1.2.2.3. Connolly dot surface algorithm (p. 541) | html | pdf |
- 22.1.2.2.4. Marching-cube algorithm (p. 541) | html | pdf |
- 22.1.2.2.5. Complete and connected rolling algorithms (p. 541) | html | pdf |
- 22.1.2.2.6. Analytic surface calculations and the Gauss–Bonnet theorem (p. 541) | html | pdf |
- 22.1.2.2.7. Approximations to the surface (p. 541) | html | pdf |
- 22.1.2.2.8. Extended atoms account for missing hydrogen atoms (p. 541) | html | pdf |
- 22.1.2.3. Estimation of binding energies (pp. 542-543) | html | pdf |
- 22.1.2.3.1. Hydrophobicity (p. 542) | html | pdf |
- 22.1.2.3.2. Estimates of binding energies (p. 542) | html | pdf |
- 22.1.2.3.3. Other non-graphical interpretive methods using surface area (pp. 542-543) | html | pdf |
- 22.1.2.4. Graphical representations of shape and properties (pp. 543-545) | html | pdf |
- 22.1.2.4.1. Realistic (pp. 543-544) | html | pdf |
- 22.1.2.4.1.1. Shaded backbone (p. 543) | html | pdf |
- 22.1.2.4.1.2. `Connolly' and solid polyhedral surfaces (p. 543) | html | pdf |
- 22.1.2.4.1.3. Photorealistic rendering (p. 543) | html | pdf |
- 22.1.2.4.1.4. GRASP surfaces (pp. 543-544) | html | pdf |
- 22.1.2.4.1.5. Implementations in popular packages (p. 544) | html | pdf |
- 22.1.2.4.2. Schematic and two-dimensional representations such as `roadmap' (pp. 544-545) | html | pdf |
- 22.1.2.5. Conclusion (p. 545) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 22.1.1.1. Standard atomic radii (Å) (p. 536) | html | pdf |
- Table 22.1.1.2. Probe radii and their relation to surface definition (p. 537) | html | pdf |
- Table 22.1.1.3. Standard residue volumes (p. 538) | html | pdf |
- Table 22.1.1.4. Standard atomic volumes (p. 539) | html | pdf |
- Table 22.1.2.1. The atomic solvation parameters of Eisenberg & McLachlan (1986) (p. 542) | html | pdf |
- 22.2. Hydrogen bonding in biological macromolecules (pp. 546-552) | html | pdf | chapter contents |
- 22.2.1. Introduction (p. 546) | html | pdf |
- 22.2.2. Nature of the hydrogen bond (p. 546) | html | pdf |
- 22.2.3. Hydrogen-bonding groups (pp. 546-547) | html | pdf |
- 22.2.3.1. Proteins (p. 546) | html | pdf |
- 22.2.3.2. Nucleic acids (pp. 546-547) | html | pdf |
- 22.2.4. Identification of hydrogen bonds: geometrical considerations (p. 547) | html | pdf |
- 22.2.5. Hydrogen bonding in proteins (pp. 547-551) | html | pdf |
- 22.2.5.1. Contribution to protein folding and stability (pp. 547-548) | html | pdf |
- 22.2.5.2. Saturation of hydrogen-bond potential (p. 548) | html | pdf |
- 22.2.5.3. Secondary structures (pp. 548-549) | html | pdf |
- 22.2.5.3.1. Helices (p. 548) | html | pdf |
- 22.2.5.3.2. β-sheets (pp. 548-549) | html | pdf |
- 22.2.5.3.3. Turns (p. 549) | html | pdf |
- 22.2.5.3.4. Aspects of in-plane geometry (p. 549) | html | pdf |
- 22.2.5.4. Side-chain hydrogen bonding (pp. 549-550) | html | pdf |
- 22.2.5.5. Hydrogen bonds with water molecules (pp. 550-551) | html | pdf |
- 22.2.6. Hydrogen bonding in nucleic acids (p. 551) | html | pdf |
- 22.2.6.1. DNA (p. 551) | html | pdf |
- 22.2.6.2. RNA (p. 551) | html | pdf |
- 22.2.7. Non-conventional hydrogen bonds (pp. 551-552) | html | pdf |
- 22.2.7.1. C—H···O hydrogen bonds (pp. 551-552) | html | pdf |
- 22.2.7.2. Hydrogen bonds involving sulfur atoms (p. 552) | html | pdf |
- 22.2.7.3. Amino-aromatic hydrogen bonding (p. 552) | html | pdf |
- References
| html | pdf |
- Figures
- 22.3. Electrostatic interactions in proteins (pp. 553-557) | html | pdf | chapter contents |
- 22.3.1. Introduction (p. 553) | html | pdf |
- 22.3.2. Theory (pp. 553-555) | html | pdf |
- 22.3.2.1. The response of the system to electrostatic fields (pp. 553-554) | html | pdf |
- 22.3.2.2. Dependence of the potential on the charge distribution (p. 554) | html | pdf |
- 22.3.2.3. The concepts of screening, reaction potentials, solvation, dielectric, polarity and polarizability (pp. 554-555) | html | pdf |
- 22.3.2.4. Calculation of energies and forces (p. 555) | html | pdf |
- 22.3.2.5. Numerical methods (p. 555) | html | pdf |
- 22.3.3. Applications (pp. 555-556) | html | pdf |
- 22.3.3.1. Electrostatic potential distributions (p. 555) | html | pdf |
- 22.3.3.2. Charge-transfer equilibria (pp. 555-556) | html | pdf |
- 22.3.3.3. Electrostatic contributions to binding energy (p. 556) | html | pdf |
- References
| html | pdf |
- Figures
- 22.4. The relevance of the Cambridge Structural Database in protein crystallography (pp. 558-574) | html | pdf | chapter contents |
- 22.4.1. Introduction (p. 558) | html | pdf |
- 22.4.2. The CSD and the PDB: data acquisition and data quality (pp. 558-559) | html | pdf |
- 22.4.2.1. Statistical inferences (p. 558) | html | pdf |
- 22.4.2.2. Data acquisition and completeness (pp. 558-559) | html | pdf |
- 22.4.2.3. Standard formats: CIF and mmCIF (p. 559) | html | pdf |
- 22.4.2.4. Structure validation (p. 559) | html | pdf |
- 22.4.3. Structural knowledge from the CSD (pp. 559-560) | html | pdf |
- 22.4.3.1. The CSD software system (p. 559) | html | pdf |
- 22.4.3.2. CSD structures and substructures of relevance to protein studies (pp. 559-560) | html | pdf |
- 22.4.3.3. Geometrical parameters of relevance to protein studies (p. 560) | html | pdf |
- 22.4.4. Intramolecular geometry (pp. 560-562) | html | pdf |
- 22.4.4.1. Mean molecular dimensions (p. 560) | html | pdf |
- 22.4.4.2. Conformational information (pp. 560-561) | html | pdf |
- 22.4.4.3. Crystallographic conformations and energies (p. 561) | html | pdf |
- 22.4.4.4. Conformational libraries (pp. 561-562) | html | pdf |
- 22.4.4.5. Metal coordination geometry (p. 562) | html | pdf |
- 22.4.5. Intermolecular data (pp. 562-567) | html | pdf |
- 22.4.5.1. van der Waals radii (p. 562) | html | pdf |
- 22.4.5.2. Hydrogen-bond geometry and directionality (p. 562) | html | pdf |
- 22.4.5.3. C—H···X hydrogen bonds (p. 563) | html | pdf |
- 22.4.5.4. O—H···π and N—H···π hydrogen bonds (pp. 563-564) | html | pdf |
- 22.4.5.5. Other non-covalent interactions (p. 564) | html | pdf |
- 22.4.5.6. Intermolecular motif formation in small-molecule crystal structures (p. 564) | html | pdf |
- 22.4.5.7. The answer `no' (pp. 564-565) | html | pdf |
- 22.4.5.8. IsoStar: a library of non-bonded interactions (p. 565) | html | pdf |
- 22.4.5.9. Protein–ligand binding (pp. 565-566) | html | pdf |
- 22.4.5.10. Modelling applications that use CSD data (pp. 566-567) | html | pdf |
- 22.4.6. Conclusion (p. 567) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 22.4.3.1. Summary of amino-acid and peptide structures available in the CSD (April 1998, 181 309 entries) (p. 559) | html | pdf |
- Table 22.4.3.2. CSD entry statistics for selected metal-containing structures (p. 560) | html | pdf |
- Table 22.4.5.1. Residual densities for carboxylic acid groups (p. 566) | html | pdf |
- Structural analysis and classification
- 23.1. Protein folds and motifs: representation, comparison and classification (pp. 575-578) | html | pdf | chapter contents |
- 23.1.1. Protein-fold classification (pp. 575-576) | html | pdf |
- 23.1.2. Locating domains in 3D structures (pp. 577-578) | html | pdf |
- 23.1.2.1. Introduction (p. 577) | html | pdf |
- 23.1.2.2. Compactness (p. 577) | html | pdf |
- 23.1.2.3. Recurrence (pp. 577-578) | html | pdf |
- 23.1.2.4. Conclusion (p. 578) | html | pdf |
- References
| html | pdf |
- Figures
- 23.2. Protein–ligand interactions (pp. 579-587) | html | pdf | chapter contents |
- 23.2.1. Introduction (p. 579) | html | pdf |
- 23.2.2. Protein–carbohydrate interactions (pp. 579-580) | html | pdf |
- 23.2.2.1. Carbohydrate recognition at the atomic level (pp. 579-580) | html | pdf |
- 23.2.3. Metals (pp. 580-581) | html | pdf |
- 23.2.3.1. Metals important in protein function and structure (pp. 580-581) | html | pdf |
- 23.2.4. Protein–nucleic acid interactions (pp. 581-585) | html | pdf |
- 23.2.4.1. The DNA double helix (pp. 581-583) | html | pdf |
- 23.2.4.2. Single-stranded sequence-nonspecific DNA–protein interactions (p. 583) | html | pdf |
- 23.2.4.3. RNA (p. 583) | html | pdf |
- 23.2.4.4. Transfer RNA (pp. 583-584) | html | pdf |
- 23.2.4.5. Stem loops (p. 584) | html | pdf |
- 23.2.4.6. Single-stranded sequence-nonspecific RNA–protein interactions (p. 584) | html | pdf |
- 23.2.4.7. The recognition of alkylated bases (pp. 584-585) | html | pdf |
- 23.2.5. Phosphate and sulfate (pp. 585-587) | html | pdf |
- 23.2.5.1. Dominant role of local dipoles in stabilization of isolated charges (p. 586) | html | pdf |
- 23.2.5.2. Short hydrogen bonds (p. 586) | html | pdf |
- 23.2.5.3. Non-complementary negative electrostatic surface potential of protein sites specific for anions (pp. 586-587) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.2.3.1. Metal ions associated with proteins (p. 580) | html | pdf |
- 23.3. Nucleic acids (pp. 588-622) | html | pdf | chapter contents |
- 23.3.1. Introduction (p. 588) | html | pdf |
- 23.3.2. Helix parameters (pp. 588-596) | html | pdf |
- 23.3.2.1. Backbone geometry (p. 588) | html | pdf |
- 23.3.2.2. Sugar ring conformations (pp. 588-589) | html | pdf |
- 23.3.2.3. Base pairing (pp. 589-592) | html | pdf |
- 23.3.2.4. Helix parameters (pp. 592-593) | html | pdf |
- 23.3.2.5. Syn/anti glycosyl bond geometry (p. 596) | html | pdf |
- 23.3.3. Comparison of A, B and Z helices (pp. 596-602) | html | pdf |
- 23.3.3.1. x displacement and groove depth (pp. 596-597) | html | pdf |
- 23.3.3.2. Glycosyl bond geometry (p. 597) | html | pdf |
- 23.3.3.3. Sugar ring conformations (pp. 597-598) | html | pdf |
- 23.3.3.4. Helical twist and rise, and propeller twist (pp. 598-600) | html | pdf |
- 23.3.3.5. Allowable RNA helices (p. 600) | html | pdf |
- 23.3.3.6. Biological applications of A, B and Z helices (pp. 600-601) | html | pdf |
- 23.3.3.7. `Watson–Crick' Z-DNA (pp. 601-602) | html | pdf |
- 23.3.4. Sequence–structure relationships in B-DNA (pp. 602-609) | html | pdf |
- 23.3.4.1. Sequence-dependent deformability (pp. 603-607) | html | pdf |
- 23.3.4.1.1. Minor groove width (p. 603) | html | pdf |
- 23.3.4.1.2. Helix bending (pp. 603-607) | html | pdf |
- 23.3.4.2. A-tract bending (pp. 607-609) | html | pdf |
- 23.3.5. Summary (p. 609) | html | pdf |
- Appendix 23.3.1. X-ray analyses of A, B and Z helices (pp. 609-622) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.3.2.1. Average torsion-angle properties of A-, B- and Z-DNA (°) (p. 593) | html | pdf |
- Table 23.3.2.2. Sugar ring conformations, pseudorotation angles and torsion angle δ (p. 593) | html | pdf |
- Table 23.3.3.1. Comparison of structures of A, B and Z helices (p. 599) | html | pdf |
- Table 23.3.4.1. Sequence-dependent differential deformability in B-DNA. I. The Major Canon (p. 605) | html | pdf |
- Table 23.3.4.2. Sequence-dependent differential deformability in B-DNA. II. The Minor Canon (p. 606) | html | pdf |
- Table A23.3.1.1. X-ray analyses of A helices, DNA and RNA (pp. 609-613) | html | pdf |
- Table A23.3.1.2. X-ray analyses of B-DNA helices and their complexes with minor-groove-binding drug molecules (pp. 613-619) | html | pdf |
- Table A23.3.1.3. X-ray analyses of Z helices (pp. 619-622) | html | pdf |
- 23.4. Solvent structure (pp. 623-647) | html | pdf | chapter contents |
- 23.4.1. Introduction (pp. 623-624) | html | pdf |
- 23.4.2. Determination of water molecules (pp. 624-625) | html | pdf |
- 23.4.3. Structural features of protein–water interactions derived from database analysis (pp. 625-630) | html | pdf |
- 23.4.3.1. Water distribution around the individual amino-acid residues in protein structures (pp. 625-627) | html | pdf |
- 23.4.3.2. The effect of secondary structure on protein–water interactions (pp. 627-629) | html | pdf |
- 23.4.3.3. The effect of tertiary structure on protein–water interactions (p. 629) | html | pdf |
- 23.4.3.4. Water mediation of protein–ligand interactions (pp. 629-630) | html | pdf |
- 23.4.4. Water structure in groups of well studied proteins (pp. 630-637) | html | pdf |
- 23.4.4.1. Crystal structures of homologous proteins (pp. 630-631) | html | pdf |
- 23.4.4.1.1. Serine proteases of the trypsin family (pp. 630-631) | html | pdf |
- 23.4.4.1.2. Legume lectin family (p. 631) | html | pdf |
- 23.4.4.2. Multiple crystal structures of the same protein (pp. 631-636) | html | pdf |
- 23.4.4.2.1. Elastase (pp. 632-634) | html | pdf |
- 23.4.4.2.2. T4 lysozyme (pp. 634-635) | html | pdf |
- 23.4.4.2.3. Ribonuclease T1 (p. 635) | html | pdf |
- 23.4.4.2.4. Ribonuclease A (pp. 635-636) | html | pdf |
- 23.4.4.2.5. Protein kinase A (p. 636) | html | pdf |
- 23.4.4.3. Summary (pp. 636-637) | html | pdf |
- 23.4.5. The classic models: small proteins with high-resolution crystal structures (pp. 637-638) | html | pdf |
- 23.4.5.1. Crambin (p. 637) | html | pdf |
- 23.4.5.2. Bovine pancreatic trypsin inhibitor (p. 637) | html | pdf |
- 23.4.5.3. Summary (pp. 637-638) | html | pdf |
- 23.4.6. Water molecules as mediators of complex formation (pp. 638-640) | html | pdf |
- 23.4.6.1. Antigen–antibody association (p. 638) | html | pdf |
- 23.4.6.2. Protein–DNA recognition (pp. 638-639) | html | pdf |
- 23.4.6.3. Cooperativity in dimeric haemoglobin (pp. 639-640) | html | pdf |
- 23.4.6.4. Summary (p. 640) | html | pdf |
- 23.4.7. Conclusions and future perspectives (p. 640) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 23.4.3.1. Specific hydrophilicity values for protein atoms (p. 627) | html | pdf |
- Table 23.4.4.1. Multiple-solvent crystal structures of elastase (p. 632) | html | pdf |
- Crystallographic databases
- 24.1. The Protein Data Bank at Brookhaven (pp. 649-656) | html | pdf | chapter contents |
- 24.1.1. Introduction (p. 649) | html | pdf |
- 24.1.2. Background and significance of the resource (pp. 649-650) | html | pdf |
- 24.1.2.1. The early years: 1971–1988 (p. 649) | html | pdf |
- 24.1.2.2. The data explosion: 1989–1992 (pp. 649-650) | html | pdf |
- 24.1.3. The PDB in 1999 (pp. 650-654) | html | pdf |
- 24.1.3.1. Contents and access to the PDB archives (pp. 650-653) | html | pdf |
- 24.1.3.2. Data deposition (pp. 653-654) | html | pdf |
- 24.1.4. Examples of the impact of the PDB (pp. 654-656) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 24.1.3.1. PDB archive contents as of May 1999 (p. 650) | html | pdf |
- Table 24.1.3.2. PDB mirror sites as of May 1999 (p. 650) | html | pdf |
- Table 24.1.3.3. 3DB Browser's linked external data sources (p. 652) | html | pdf |
- Table 24.1.3.4. Search fields of 3DB Browser (p. 652) | html | pdf |
- Table 24.1.3.5. Search engines used by 3DB Browser (p. 652) | html | pdf |
- Table 24.1.3.6. PDB data-validation checks (p. 653) | html | pdf |
- Table 24.1.3.7. PDB structure-factor submissions, as of November 1998 (p. 654) | html | pdf |
- Table 24.1.4.1. Key web sites related to three-dimensional structures of biological macromolecules (p. 655) | html | pdf |
- 24.2. The Nucleic Acid Database (NDB) (pp. 657-662) | html | pdf | chapter contents |
- 24.2.1. Introduction (p. 657) | html | pdf |
- 24.2.2. Information content of the NDB (p. 657) | html | pdf |
- 24.2.3. Data processing (pp. 657-659) | html | pdf |
- 24.2.4. The database (p. 659) | html | pdf |
- 24.2.5. Data distribution (pp. 659-662) | html | pdf |
- 24.2.5.1. Archives (p. 659) | html | pdf |
- 24.2.5.2. Atlas (p. 659) | html | pdf |
- 24.2.5.3. NDB searches (pp. 659-662) | html | pdf |
- 24.2.5.4. Mirror sites (p. 662) | html | pdf |
- 24.2.6. Outreach (p. 662) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 24.2.2.1. The information content of the NDB (p. 657) | html | pdf |
- Table 24.2.5.1. Quick reports available from the NDB (p. 659) | html | pdf |
- 24.3. The Cambridge Structural Database (CSD) (pp. 663-668) | html | pdf | chapter contents |
- 24.3.1. Introduction and historical perspective (p. 663) | html | pdf |
- 24.3.2. Information content of the CSD (pp. 663-665) | html | pdf |
- 24.3.2.1. Acquisition of information (p. 663) | html | pdf |
- 24.3.2.2. Data organization (pp. 663-664) | html | pdf |
- 24.3.2.3. 1D bibliographic and chemical data (p. 664) | html | pdf |
- 24.3.2.4. 2D chemical connectivity data (p. 664) | html | pdf |
- 24.3.2.5. 3D crystal structure data (p. 664) | html | pdf |
- 24.3.2.6. Derived data and bit-encoded information (pp. 664-665) | html | pdf |
- 24.3.2.7. Data validation (p. 665) | html | pdf |
- 24.3.2.8. The CSD-Use database (p. 665) | html | pdf |
- 24.3.3. The CSD software system (pp. 665-666) | html | pdf |
- 24.3.3.1. Overview (p. 665) | html | pdf |
- 24.3.3.2. PreQuest (p. 665) | html | pdf |
- 24.3.3.3. Searching the CSD: Quest3D and ConQuest (p. 665) | html | pdf |
- 24.3.3.4. Quest3D (pp. 665-666) | html | pdf |
- 24.3.3.5. ConQuest (p. 666) | html | pdf |
- 24.3.3.6. Vista (p. 666) | html | pdf |
- 24.3.3.7. Pluto (p. 666) | html | pdf |
- 24.3.3.8. Use of the CSD software system: an example (p. 666) | html | pdf |
- 24.3.4. Knowledge engineering from the CSD (pp. 667-668) | html | pdf |
- 24.3.4.1. Databases versus knowledge bases (pp. 667-668) | html | pdf |
- 24.3.4.2. IsoStar: a library of knowledge about intermolecular interactions (p. 668) | html | pdf |
- 24.3.5. Accessing the CSD system and IsoStar (p. 668) | html | pdf |
- 24.3.5.1. Release mechanisms (p. 668) | html | pdf |
- 24.3.5.2. Information about the CCDC (p. 668) | html | pdf |
- 24.3.6. Conclusion (p. 668) | html | pdf |
- Figures
- Tables
- Table 24.3.1.1. CSD statistics (August 2000) (p. 663) | html | pdf |
- 24.4. The Biological Macromolecule Crystallization Database (pp. 669-674) | html | pdf | chapter contents |
- 24.4.1. Introduction (p. 669) | html | pdf |
- 24.4.2. History of the BMCD (p. 669) | html | pdf |
- 24.4.3. BMCD data (p. 669) | html | pdf |
- 24.4.4. BMCD implementation – web interface (p. 670) | html | pdf |
- 24.4.5. Reproducing published crystallization procedures (pp. 670-671) | html | pdf |
- 24.4.6. Crystallization screens (p. 671) | html | pdf |
- 24.4.7. A general crystallization procedure (pp. 671-674) | html | pdf |
- 24.4.8. The future of the BMCD (p. 674) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 24.4.6.1. Crystallization conditions for endonucleases (pp. 672-673) | html | pdf |
- 24.5. The Protein Data Bank, 1999– (pp. 675-684) | html | pdf | chapter contents |
- 24.5.1. Introduction (p. 675) | html | pdf |
- 24.5.2. Data acquisition and processing (pp. 675-677) | html | pdf |
- 24.5.2.1. Content of the data collected by the PDB (pp. 675-676) | html | pdf |
- 24.5.2.2. Validation (pp. 676-677) | html | pdf |
- 24.5.2.3. NMR data (p. 677) | html | pdf |
- 24.5.2.4. Data-processing statistics (p. 677) | html | pdf |
- 24.5.3. The PDB database resource (pp. 677-678) | html | pdf |
- 24.5.3.1. The database architecture (pp. 677-678) | html | pdf |
- 24.5.3.2. Database queries (p. 678) | html | pdf |
- 24.5.4. Data distribution (p. 679) | html | pdf |
- 24.5.5. Data archiving (pp. 679-680) | html | pdf |
- 24.5.6. Maintenance of the legacy of the BNL system (p. 680) | html | pdf |
- 24.5.7. Current developments (p. 680) | html | pdf |
- 24.5.8. PDB advisory boards (p. 680) | html | pdf |
- 24.5.9. Further information (pp. 680-681) | html | pdf |
- 24.5.10. Conclusion (p. 681) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 24.5.2.1. Content of data in the PDB (p. 676) | html | pdf |
- Table 24.5.2.2. Demographics of the released data in the PDB as of 14 September 1999 (p. 677) | html | pdf |
- Table 24.5.3.1. Current query capabilities of the PDB (p. 678) | html | pdf |
- Table 24.5.3.2. Static cross-links to other data resources currently provided by the PDB (p. 679) | html | pdf |
- Table 24.5.3.3. Web query statistics for the primary RCSB site (www.rcsb.org
) (p. 679) | html | pdf |
- Table 24.5.9.1. PDB information sources (p. 680) | html | pdf |
- Macromolecular crystallography programs
- 25.1. Survey of programs for crystal structure determination and analysis of macromolecules (pp. 685-694) | html | pdf | chapter contents |
- 25.1.1. Introduction (p. 685) | html | pdf |
- 25.1.2. Multipurpose crystallographic program systems (pp. 685-687) | html | pdf |
- 25.1.2.1. Biological software from the EBI (p. 685) | html | pdf |
- 25.1.2.2. BIOMOL (p. 685) | html | pdf |
- 25.1.2.3. BLANC (p. 686) | html | pdf |
- 25.1.2.4. CCP4 program suite (p. 686) | html | pdf |
- 25.1.2.5. CNS (p. 686) | html | pdf |
- 25.1.2.6. MAIN (p. 686) | html | pdf |
- 25.1.2.7. PHASES (p. 686) | html | pdf |
- 25.1.2.8. PROTEIN (p. 686) | html | pdf |
- 25.1.2.9. The Purdue University XTAL Program Library (pp. 686-687) | html | pdf |
- 25.1.2.10. SOLVE (p. 687) | html | pdf |
- 25.1.2.11. USF (p. 687) | html | pdf |
- 25.1.2.12. X-PLOR (p. 687) | html | pdf |
- 25.1.2.13. Xtal (p. 687) | html | pdf |
- 25.1.2.14. XtalView (p. 687) | html | pdf |
- 25.1.3. Data collection and processing (pp. 687-688) | html | pdf |
- 25.1.3.1. DPS (p. 687) | html | pdf |
- 25.1.3.2. HKL (p. 687) | html | pdf |
- 25.1.3.3. LOCSCL (p. 687) | html | pdf |
- 25.1.3.4. MOSFLM (p. 687) | html | pdf |
- 25.1.3.5. SCALA (p. 688) | html | pdf |
- 25.1.3.6. STRATEGY (p. 688) | html | pdf |
- 25.1.4. Phase determination and structure solution (pp. 688-689) | html | pdf |
- 25.1.4.1. AMoRe (p. 688) | html | pdf |
- 25.1.4.2. GLRF (p. 688) | html | pdf |
- 25.1.4.3. HEAVY (p. 688) | html | pdf |
- 25.1.4.4. MADSYS (p. 688) | html | pdf |
- 25.1.4.5. MLPHARE (p. 688) | html | pdf |
- 25.1.4.6. Shake-and-Bake (p. 688) | html | pdf |
- 25.1.4.7. SHARP (pp. 688-689) | html | pdf |
- 25.1.5. Structure refinement (p. 689) | html | pdf |
- 25.1.5.1. ARP/wARP (p. 689) | html | pdf |
- 25.1.5.2. MULTAN88 (p. 689) | html | pdf |
- 25.1.5.3. PROLSQ (p. 689) | html | pdf |
- 25.1.5.4. REFMAC (p. 689) | html | pdf |
- 25.1.5.5. RSRef (p. 689) | html | pdf |
- 25.1.5.6. SHELX97 (p. 689) | html | pdf |
- 25.1.5.7. SIR97 (p. 689) | html | pdf |
- 25.1.5.8. TNT (p. 689) | html | pdf |
- 25.1.6. Phase improvement and density-map modification (pp. 689-690) | html | pdf |
- 25.1.6.1. BUSTER (p. 690) | html | pdf |
- 25.1.6.2. DM/DMMULTI (p. 690) | html | pdf |
- 25.1.6.3. FINDNCS (p. 690) | html | pdf |
- 25.1.6.4. RAVE (p. 690) | html | pdf |
- 25.1.6.5. SOLOMON (p. 690) | html | pdf |
- 25.1.6.6. SQUASH (p. 690) | html | pdf |
- 25.1.7. Graphics and model building (pp. 690-691) | html | pdf |
- 25.1.7.1. AMBER (p. 690) | html | pdf |
- 25.1.7.2. CHARMM (p. 690) | html | pdf |
- 25.1.7.3. Insight II (p. 690) | html | pdf |
- 25.1.7.4. MidasPlus (pp. 690-691) | html | pdf |
- 25.1.7.5. MODELLER (p. 691) | html | pdf |
- 25.1.7.6. MOLMOL (p. 691) | html | pdf |
- 25.1.7.7. O (p. 691) | html | pdf |
- 25.1.7.8. QUANTA (p. 691) | html | pdf |
- 25.1.7.9. SYBYL (p. 691) | html | pdf |
- 25.1.7.10. Turbo FRODO (p. 691) | html | pdf |
- 25.1.8. Structure analysis and verification (pp. 691-693) | html | pdf |
- 25.1.8.1. DSSP (pp. 691-692) | html | pdf |
- 25.1.8.2. HBPLUS (p. 692) | html | pdf |
- 25.1.8.3. Molecular Surface (p. 692) | html | pdf |
- 25.1.8.4. MSMS (p. 692) | html | pdf |
- 25.1.8.5. NACCESS (p. 692) | html | pdf |
- 25.1.8.6. NAOMI (p. 692) | html | pdf |
- 25.1.8.7. PASS (p. 692) | html | pdf |
- 25.1.8.8. PROCHECK (p. 692) | html | pdf |
- 25.1.8.9. ProFit (pp. 692-693) | html | pdf |
- 25.1.8.10. PROSA (p. 693) | html | pdf |
- 25.1.8.11. SARF (p. 693) | html | pdf |
- 25.1.8.12. SQUID (p. 693) | html | pdf |
- 25.1.8.13. STAMP (p. 693) | html | pdf |
- 25.1.8.14. SURFNET (p. 693) | html | pdf |
- 25.1.8.15. WHAT CHECK (p. 693) | html | pdf |
- 25.1.8.16. WHAT IF (p. 693) | html | pdf |
- 25.1.9. Structure presentation (pp. 693-694) | html | pdf |
- 25.1.9.1. GRASP (p. 693) | html | pdf |
- 25.1.9.2. LIGPLOT (p. 693) | html | pdf |
- 25.1.9.3. MOLSCRIPT (pp. 693-694) | html | pdf |
- 25.1.9.4. NUCPLOT (p. 694) | html | pdf |
- 25.1.9.5. ORTEP (p. 694) | html | pdf |
- 25.1.9.6. RasMol (p. 694) | html | pdf |
- 25.1.9.7. Raster3D (p. 694) | html | pdf |
- 25.1.9.8. Ribbons (p. 694) | html | pdf |
- 25.1.9.9. SETOR (p. 694) | html | pdf |
- 25.1.9.10. VMD (p. 694) | html | pdf |
- References
| html | pdf |
- 25.2. Programs and program systems in wide use (pp. 695-743) | html | pdf | chapter contents |
W. Furey, K. D. Cowtan, K. Y. J. Zhang, P. Main, A. T. Brunger, P. D. Adams, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J.-S. Jiang, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, D. E. Tronrud, L. F. Ten Eyck, V. S. Lamzin, A. Perrakis, K. S. Wilson, R. A. Laskowski, M. W. MacArthur, J. M. Thornton, P. J. Kraulis, D. C. Richardson, J. S. Richardson, W. Kabsch and G. M. Sheldrick - 25.2.1. PHASES (pp. 695-705) | html | pdf |
- 25.2.1.1. Overall scope of the package (pp. 695-696) | html | pdf |
- 25.2.1.1.1. Isomorphous replacement, anomalous scattering and MAD phasing (p. 695) | html | pdf |
- 25.2.1.1.2. Solvent flattening and negative-density truncation (p. 695) | html | pdf |
- 25.2.1.1.3. Noncrystallographic symmetry averaging (p. 695) | html | pdf |
- 25.2.1.1.4. Partial structure phase combination and phase extension (p. 696) | html | pdf |
- 25.2.1.2. Design principles (p. 696) | html | pdf |
- 25.2.1.2.1. General program structure and data flow (p. 696) | html | pdf |
- 25.2.1.2.2. Parameter and cumulative log files (p. 696) | html | pdf |
- 25.2.1.3. Merging and scaling native and derivative data (pp. 696-697) | html | pdf |
- 25.2.1.3.1. Relative Wilson scaling (p. 696) | html | pdf |
- 25.2.1.3.2. Global anisotropic scaling (p. 697) | html | pdf |
- 25.2.1.3.3. Local scaling (p. 697) | html | pdf |
- 25.2.1.3.4. Outlier rejection (p. 697) | html | pdf |
- 25.2.1.4. Fourier-map calculations (p. 697) | html | pdf |
- 25.2.1.4.1. Submaps (p. 697) | html | pdf |
- 25.2.1.4.2. Orthogonal and skewed maps (p. 697) | html | pdf |
- 25.2.1.4.3. Graphics maps and skeletonization (p. 697) | html | pdf |
- 25.2.1.4.4. Peak search (p. 697) | html | pdf |
- 25.2.1.5. Structure-factor and phase calculations (pp. 697-698) | html | pdf |
- 25.2.1.5.1. By heavy-atom or anomalous-scattering methods (pp. 697-698) | html | pdf |
- 25.2.1.5.2. Directly from atomic coordinates (p. 698) | html | pdf |
- 25.2.1.5.3. By map inversion (p. 698) | html | pdf |
- 25.2.1.6. Parameter refinement (pp. 698-699) | html | pdf |
- 25.2.1.6.1. Against amplitude differences (p. 698) | html | pdf |
- 25.2.1.6.2. By minimizing lack of closure (pp. 698-699) | html | pdf |
- 25.2.1.6.2.1. `Classical' phase refinement (p. 699) | html | pdf |
- 25.2.1.6.2.2. Approximate-likelihood method (p. 699) | html | pdf |
- 25.2.1.6.2.3. Using external phase information (p. 699) | html | pdf |
- 25.2.1.6.3. Rigid-group refinement (p. 699) | html | pdf |
- 25.2.1.7. Origin and hand correlation, and completing the heavy-atom substructure (pp. 699-700) | html | pdf |
- 25.2.1.7.1. Difference and cross-difference Fourier syntheses (pp. 699-700) | html | pdf |
- 25.2.1.7.2. Bijvoet difference and cross-Bijvoet difference Fourier syntheses (p. 700) | html | pdf |
- 25.2.1.8. Solvent flattening and negative-density truncation (pp. 700-701) | html | pdf |
- 25.2.1.8.1. Mask construction (pp. 700-701) | html | pdf |
- 25.2.1.8.1.1. Automated mask construction (pp. 700-701) | html | pdf |
- 25.2.1.8.1.2. Masks from atomic coordinates (p. 701) | html | pdf |
- 25.2.1.8.1.3. Mask verification and manual editing (p. 701) | html | pdf |
- 25.2.1.8.2. The flattening and truncation procedure (p. 701) | html | pdf |
- 25.2.1.9. Phase combination and extension procedures (pp. 701-702) | html | pdf |
- 25.2.1.9.1. Modified Sim weights (p. 701) | html | pdf |
- 25.2.1.9.2. σA weights (p. 702) | html | pdf |
- 25.2.1.9.3. Damping contributions (p. 702) | html | pdf |
- 25.2.1.9.4. Phase extension (p. 702) | html | pdf |
- 25.2.1.10. Noncrystallographic symmetry calculations (pp. 702-704) | html | pdf |
- 25.2.1.10.1. Operator representation and definitions (p. 702) | html | pdf |
- 25.2.1.10.2. Operator refinement (pp. 702-703) | html | pdf |
- 25.2.1.10.2.1. Simple rotational symmetry (p. 703) | html | pdf |
- 25.2.1.10.2.2. Complex rotational and/or translational symmetry (p. 703) | html | pdf |
- 25.2.1.10.3. Averaging mask construction (p. 703) | html | pdf |
- 25.2.1.10.4. Map averaging (p. 703) | html | pdf |
- 25.2.1.10.4.1. Single-crystal averaging (p. 703) | html | pdf |
- 25.2.1.10.4.2. Multiple-crystal averaging (p. 703) | html | pdf |
- 25.2.1.10.5. Phase combination and extension (pp. 703-704) | html | pdf |
- 25.2.1.11. Automated iterative processing (p. 704) | html | pdf |
- 25.2.1.11.1. The DOALL procedure (p. 704) | html | pdf |
- 25.2.1.11.2. The EXTNDAVG and EXTNDAVG_MC procedures (p. 704) | html | pdf |
- 25.2.1.12. Graphical capabilities (pp. 704-705) | html | pdf |
- 25.2.1.12.1. Pseudo-precession photographs (p. 704) | html | pdf |
- 25.2.1.12.2. Interactive contouring or mask editing (p. 704) | html | pdf |
- 25.2.1.12.3. Off-line contouring (p. 704) | html | pdf |
- 25.2.1.12.4. Generic plot files and drivers (p. 705) | html | pdf |
- 25.2.1.12.4.1. GL displays (p. 705) | html | pdf |
- 25.2.1.12.4.2. X-Window displays (p. 705) | html | pdf |
- 25.2.1.12.4.3. PostScript files (p. 705) | html | pdf |
- 25.2.1.12.4.4. Tektronix output (p. 705) | html | pdf |
- 25.2.1.13. Auxiliary programs (p. 705) | html | pdf |
- 25.2.1.13.1. Coordinate conversions (p. 705) | html | pdf |
- 25.2.1.13.2. NC symmetry operator conversions (p. 705) | html | pdf |
- 25.2.1.13.3. Binary or formatted file conversions (p. 705) | html | pdf |
- 25.2.1.13.4. Importing phase information (p. 705) | html | pdf |
- 25.2.1.13.5. Phase set comparisons (p. 705) | html | pdf |
- 25.2.2. DM/DMMULTI software for phase improvement by density modification (pp. 705-710) | html | pdf |
- 25.2.2.1. Introduction (pp. 705-706) | html | pdf |
- 25.2.2.2. Program operation (p. 706) | html | pdf |
- 25.2.2.3. Preparation of input data (p. 706) | html | pdf |
- 25.2.2.4. Choice of modes (pp. 706-709) | html | pdf |
- 25.2.2.4.1. Density-modification modes (p. 707) | html | pdf |
- 25.2.2.4.2. Phase-combination modes (pp. 707-708) | html | pdf |
- 25.2.2.4.3. Phase-extension schemes (pp. 708-709) | html | pdf |
- 25.2.2.5. Code description (pp. 709-710) | html | pdf |
- 25.2.2.5.1. Scaling (p. 709) | html | pdf |
- 25.2.2.5.2. Solvent-mask determination (pp. 709-710) | html | pdf |
- 25.2.2.5.3. Averaging-mask determination (p. 710) | html | pdf |
- 25.2.2.5.4. Fourier transforms (p. 710) | html | pdf |
- 25.2.2.5.5. Histogram matching (p. 710) | html | pdf |
- 25.2.2.5.6. Averaging (p. 710) | html | pdf |
- 25.2.2.5.7. Multi-crystal averaging (p. 710) | html | pdf |
- 25.2.3. The structure-determination language of the Crystallography & NMR System (pp. 710-716) | html | pdf |
- 25.2.3.1. Introduction (p. 710) | html | pdf |
- 25.2.3.2. The CNS language (pp. 711-712) | html | pdf |
- 25.2.3.3. Symbols and parameters (p. 712) | html | pdf |
- 25.2.3.4. Statistical functions (p. 712) | html | pdf |
- 25.2.3.5. Symbolic target function (pp. 712-713) | html | pdf |
- 25.2.3.6. Modules and procedures (p. 714) | html | pdf |
- 25.2.3.7. Task files (p. 715) | html | pdf |
- 25.2.3.8. HTML interface (p. 715) | html | pdf |
- 25.2.3.9. Example: combined maximum-likelihood and simulated-annealing refinement (pp. 715-716) | html | pdf |
- 25.2.3.10. Conclusions (p. 716) | html | pdf |
- 25.2.4. The TNT refinement package (pp. 716-720) | html | pdf |
- 25.2.4.1. Scope and function of the package (pp. 716-717) | html | pdf |
- 25.2.4.2. Historical context (p. 717) | html | pdf |
- 25.2.4.3. Design principles (pp. 717-718) | html | pdf |
- 25.2.4.3.1. Refinement should be simple to run (p. 717) | html | pdf |
- 25.2.4.3.2. Refinement should run quickly and use as little memory as possible (pp. 717-718) | html | pdf |
- 25.2.4.3.3. The source code should not require customization for each project (p. 718) | html | pdf |
- 25.2.4.4. Current structure of the package (p. 718) | html | pdf |
- 25.2.4.5. Innovations first introduced in TNT (pp. 718-719) | html | pdf |
- 25.2.4.5.1. Identifying and restraining symmetry-related contacts (1982) (p. 719) | html | pdf |
- 25.2.4.5.2. The ability of a single package to perform both individual atom and rigid-body refinement (1982) (p. 719) | html | pdf |
- 25.2.4.5.3. Space-group optimized FFTs for all space groups (1989) (p. 719) | html | pdf |
- 25.2.4.5.4. Modelling bulk solvent scattering via local scaling (∼1989) (p. 719) | html | pdf |
- 25.2.4.5.5. Preconditioned conjugate-gradient minimization (1990) (p. 719) | html | pdf |
- 25.2.4.5.6. Restraining stereochemistry of chemical links to symmetry-related molecules (∼1992) (p. 719) | html | pdf |
- 25.2.4.5.7. Knowledge-based B-factor restraints (∼1994) (p. 719) | html | pdf |
- 25.2.4.5.8. Block-diagonal preconditioned conjugate-gradient minimization with pseudoinverses (1998) (p. 719) | html | pdf |
- 25.2.4.5.9. Generalization of noncrystallographic symmetry operators to include shifts in the average B factor (1998) (p. 719) | html | pdf |
- 25.2.4.6. TNT as a research tool (pp. 719-720) | html | pdf |
- 25.2.4.6.1. Michael Chapman's real-space refinement package (p. 719) | html | pdf |
- 25.2.4.6.2. Gerard Bricogne's Buster refinement package (p. 719) | html | pdf |
- 25.2.4.6.3. Randy Read's maximum-likelihood function (p. 720) | html | pdf |
- 25.2.4.6.4. J. P. Abrahams' likelihood-weighted noncrystallographic symmetry restraints (p. 720) | html | pdf |
- 25.2.5. The ARP/wARP suite for automated construction and refinement of protein models (pp. 720-722) | html | pdf |
- 25.2.5.1. Refinement and model building are two sides of modelling a structure (pp. 720-721) | html | pdf |
- 25.2.5.1.1. Model update (p. 720) | html | pdf |
- 25.2.5.1.2. Model reconstruction (pp. 720-721) | html | pdf |
- 25.2.5.1.3. Representation of a map by free-atom models (p. 721) | html | pdf |
- 25.2.5.1.4. Hybrid models (p. 721) | html | pdf |
- 25.2.5.1.5. Real-space manipulation coupled with reciprocal-space refinement (p. 721) | html | pdf |
- 25.2.5.2. ARP/wARP applications (pp. 721-722) | html | pdf |
- 25.2.5.2.1. Model building from initial phases (p. 721) | html | pdf |
- 25.2.5.2.2. Refinement of molecular-replacement solutions (p. 721) | html | pdf |
- 25.2.5.2.3. Density modification via averaging of multiple refinements (pp. 721-722) | html | pdf |
- 25.2.5.2.4. Ab initio solution of metalloproteins (p. 722) | html | pdf |
- 25.2.5.2.5. Solvent building (p. 722) | html | pdf |
- 25.2.5.3. Applicability and requirements (p. 722) | html | pdf |
- 25.2.5.4. An example (p. 722) | html | pdf |
- 25.2.6. PROCHECK: validation of protein-structure coordinates (pp. 722-725) | html | pdf |
- 25.2.6.1. Introduction (pp. 722-723) | html | pdf |
- 25.2.6.2. The program (p. 723) | html | pdf |
- 25.2.6.3. The parameters (p. 723) | html | pdf |
- 25.2.6.4. Which parameters are best? (pp. 723-724) | html | pdf |
- 25.2.6.5. Input (pp. 724-725) | html | pdf |
- 25.2.6.6. Output produced (p. 725) | html | pdf |
- 25.2.6.7. Other validation tools (p. 725) | html | pdf |
- 25.2.7. MolScript (pp. 725-727) | html | pdf |
- 25.2.7.1. Introduction (p. 725) | html | pdf |
- 25.2.7.2. Input (p. 725) | html | pdf |
- 25.2.7.3. Graphics (pp. 725-726) | html | pdf |
- 25.2.7.3.1. The coordinate system (p. 725) | html | pdf |
- 25.2.7.3.2. The graphics state (pp. 725-726) | html | pdf |
- 25.2.7.3.3. Graphics commands (p. 726) | html | pdf |
- 25.2.7.3.4. Atom and residue selection (p. 726) | html | pdf |
- 25.2.7.3.5. External objects (p. 726) | html | pdf |
- 25.2.7.4. Output (p. 726) | html | pdf |
- 25.2.7.4.1. PostScript (p. 726) | html | pdf |
- 25.2.7.4.2. Raster3D (p. 726) | html | pdf |
- 25.2.7.4.3. VRML97 (p. 726) | html | pdf |
- 25.2.7.4.4. OpenGL (p. 726) | html | pdf |
- 25.2.7.4.5. Image files (p. 726) | html | pdf |
- 25.2.7.5. Utilities (pp. 726-727) | html | pdf |
- 25.2.8. MAGE, PROBE and kinemages (pp. 727-730) | html | pdf |
- 25.2.8.1. Introduction to aims and concepts (p. 727) | html | pdf |
- 25.2.8.2. Use as a reader of existing kinemages (p. 727) | html | pdf |
- 25.2.8.3. Use for teaching (pp. 727-728) | html | pdf |
- 25.2.8.4. Use for research (pp. 728-729) | html | pdf |
- 25.2.8.5. Contact dots in crystallographic rebuilding (p. 729) | html | pdf |
- 25.2.8.6. Making kinemages (pp. 729-730) | html | pdf |
- 25.2.8.7. Software notes (p. 730) | html | pdf |
- 25.2.9. XDS (pp. 730-734) | html | pdf |
- 25.2.9.1. Functional specification (p. 730) | html | pdf |
- 25.2.9.2. Components of the package (pp. 730-734) | html | pdf |
- 25.2.9.2.1. XDS (pp. 730-733) | html | pdf |
- 25.2.9.2.2. XPLAN (p. 733) | html | pdf |
- 25.2.9.2.3. XSCALE (pp. 733-734) | html | pdf |
- 25.2.9.2.4. VIEW (p. 734) | html | pdf |
- 25.2.9.2.5. XDSCONV (p. 734) | html | pdf |
- 25.2.9.3. Remarks (p. 734) | html | pdf |
- 25.2.10. Macromolecular applications of SHELX (pp. 734-738) | html | pdf |
- 25.2.10.1. Historical introduction to SHELX (p. 734) | html | pdf |
- 25.2.10.2. Program organization and philosophy (p. 735) | html | pdf |
- 25.2.10.3. Heavy-atom location using SHELXS and SHELXD (pp. 735-736) | html | pdf |
- 25.2.10.3.1. The Patterson map interpretation algorithm in SHELXS (p. 735) | html | pdf |
- 25.2.10.3.2. Integrated Patterson and direct methods: SHELXD (p. 735) | html | pdf |
- 25.2.10.3.3. Practical considerations (p. 736) | html | pdf |
- 25.2.10.4. Macromolecular refinement using SHELXL (pp. 736-737) | html | pdf |
- 25.2.10.4.1. Constraints and restraints (p. 736) | html | pdf |
- 25.2.10.4.2. Least-squares refinement algebra (p. 736) | html | pdf |
- 25.2.10.4.3. Full-matrix estimates of standard uncertainties (p. 736) | html | pdf |
- 25.2.10.4.4. Refinement of anisotropic displacement parameters (pp. 736-737) | html | pdf |
- 25.2.10.4.5. Similar geometry and NCS restraints (p. 737) | html | pdf |
- 25.2.10.4.6. Modelling disorder and solvent (p. 737) | html | pdf |
- 25.2.10.4.7. Twinned crystals (p. 737) | html | pdf |
- 25.2.10.4.8. The radius of convergence (p. 737) | html | pdf |
- 25.2.10.5. SHELXPRO – protein interface to SHELX (pp. 737-738) | html | pdf |
- 25.2.10.6. Distribution and support of SHELX (p. 738) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 25.2.6.1. Summary of expected values for stereochemical parameters in well resolved structures (p. 723) | html | pdf |
- Table 25.2.9.1. Information exchange between program steps of XDS (p. 731) | html | pdf |
- A historical perspective
- 26.1. How the structure of lysozyme was actually determined (pp. 745-772) | html | pdf | chapter contents |
- 26.1.1. Introduction (p. 745) | html | pdf |
- 26.1.2. Structure analysis at 6 Å resolution (pp. 745-753) | html | pdf |
- 26.1.2.1. Technical facilities (p. 745) | html | pdf |
- 26.1.2.2. Lysozyme crystallization (pp. 745-746) | html | pdf |
- 26.1.2.3. Preparation of heavy-atom derivatives (p. 746) | html | pdf |
- 26.1.2.4. Determination of heavy-atom positions (pp. 746-747) | html | pdf |
- 26.1.2.4.1. The mercuri-iodide (K2HgI4) derivative (p. 747) | html | pdf |
- 26.1.2.4.2. The palladium chloride (K2PdCl4) derivative (p. 747) | html | pdf |
- 26.1.2.4.3. The o-mercurihydroxytoluene p-sulfonate (MHTS) derivative (p. 747) | html | pdf |
- 26.1.2.4.4. Other potential derivatives (p. 747) | html | pdf |
- 26.1.2.5. Refinement of heavy-atom parameters (p. 747) | html | pdf |
- 26.1.2.6. Analysis in three dimensions (pp. 747-751) | html | pdf |
- 26.1.2.6.1. X-ray intensity measurements (pp. 747-750) | html | pdf |
- 26.1.2.6.2. Data processing (pp. 750-751) | html | pdf |
- 26.1.2.6.3. The absolute scale of the intensities (p. 751) | html | pdf |
- 26.1.2.6.4. Re-assessment of heavy-atom derivatives (p. 751) | html | pdf |
- 26.1.2.7. Phase determination at 6 Å resolution (pp. 751-752) | html | pdf |
- 26.1.2.8. The electron-density map of lysozyme at 6 Å resolution (pp. 752-753) | html | pdf |
- 26.1.3. Analysis of the structure at 2 Å resolution (pp. 753-765) | html | pdf |
- 26.1.3.1. Heavy-atom derivatives at 2 Å resolution (pp. 754-756) | html | pdf |
- 26.1.3.2. Intensity measurements (pp. 756-757) | html | pdf |
- 26.1.3.3. The second low-resolution map at 6 Å (p. 757) | html | pdf |
- 26.1.3.4. Intensity measurements at high resolution (pp. 757-759) | html | pdf |
- 26.1.3.4.1. Experimental methods (pp. 757-758) | html | pdf |
- 26.1.3.4.2. Diffractometer output (pp. 758-759) | html | pdf |
- 26.1.3.5. Data processing (p. 759) | html | pdf |
- 26.1.3.5.1. Absorption corrections (p. 759) | html | pdf |
- 26.1.3.6. Further stages of data processing (pp. 759-760) | html | pdf |
- 26.1.3.7. The crystal-type problem (pp. 760-761) | html | pdf |
- 26.1.3.8. Final refinement of heavy-atom parameters (pp. 761-762) | html | pdf |
- 26.1.3.9. Calculation of phase values (p. 762) | html | pdf |
- 26.1.3.10. The electron-density map at 2 Å resolution (p. 763) | html | pdf |
- 26.1.3.11. Map interpretation and model building (pp. 763-765) | html | pdf |
- 26.1.4. Structural studies on the biological function of lysozyme (pp. 765-769) | html | pdf |
- 26.1.4.1. Lysozyme substrates (pp. 765-766) | html | pdf |
- 26.1.4.2. The crystal structure of GlcNAc (p. 766) | html | pdf |
- 26.1.4.3. Low-resolution binding studies of lysozyme with GlcNAc and other sugars (p. 766) | html | pdf |
- 26.1.4.4. Binding studies of lysozyme with tri-N-acetyl-chitotriose, (GlcNAc)3, at 2 Å resolution (pp. 766-768) | html | pdf |
- 26.1.4.5. Proposals for the catalytic mechanism of lysozyme (pp. 768-769) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 26.1.2.1. Heavy-atom parameters used in the final phase calculation for the lysozyme structure (p. 752) | html | pdf |
- Table 26.1.3.1. Structure amplitudes of the reflections from crystal types I and II (p. 761) | html | pdf |
- Table 26.1.3.2. Heavy-atom parameters for the 2 Å structure (p. 761) | html | pdf |
- Table 26.1.3.3. Discrepancies in amino-acid sequences (excluding Asp/Asn) (p. 764) | html | pdf |