International Tables for Crystallography
Volume C: Mathematical, physical and chemical tables
First online edition (2006) ISBN: 978-1-4020-1900-5 doi: 10.1107/97809553602060000103
Edited by E. Prince
Contents
- Preface to the third edition (p. xxxi) | html | pdf |
- Crystal geometry and symmetry
- 1.1. Summary of general formulae (pp. 2-5) | html | pdf | chapter contents |
- 1.1.1. General relations between direct and reciprocal lattices (pp. 2-3) | html | pdf |
- 1.1.1.1. Primitive crystallographic bases (pp. 2-3) | html | pdf |
- 1.1.1.2. Non-primitive crystallographic bases (p. 3) | html | pdf |
- 1.1.2. Lattice vectors, point rows, and net planes (pp. 3-4) | html | pdf |
- 1.1.3. Angles in direct and reciprocal space (pp. 4-5) | html | pdf |
- 1.1.4. The Miller formulae (p. 5) | html | pdf |
- References
| html | pdf |
- Tables
- Table 1.1.1.1. Direct and reciprocal lattices described with respect to conventional basis systems (p. 3) | html | pdf |
- 1.2. Application to the crystal systems (pp. 6-9) | html | pdf | chapter contents |
- 1.2.1. Triclinic crystal system (p. 6) | html | pdf |
- 1.2.2. Monoclinic crystal system (p. 6) | html | pdf |
- 1.2.2.1. Setting with `unique axis b' (p. 6) | html | pdf |
- 1.2.2.2. Setting with `unique axis c' (p. 6) | html | pdf |
- 1.2.3. Orthorhombic crystal system (pp. 6-7) | html | pdf |
- 1.2.4. Tetragonal crystal system (p. 7) | html | pdf |
- 1.2.5. Trigonal and hexagonal crystal system (pp. 7-9) | html | pdf |
- 1.2.5.1. Description referred to hexagonal axes (pp. 7-8) | html | pdf |
- 1.2.5.2. Description referred to rhombohedral axes (pp. 8-9) | html | pdf |
- 1.2.6. Cubic crystal system (p. 9) | html | pdf |
- References
| html | pdf |
- Tables
- Table 1.2.4.1. Assignment of integers to pairs h, k with (p. 7) | html | pdf |
- Table 1.2.5.1. Assignment of integers to pairs h, k with (p. 8) | html | pdf |
- Table 1.2.5.2. Assignment of integers to triplets h, k, l with and to integers (p. 8) | html | pdf |
- Table 1.2.6.1. Assignment of integers to triplets h, k, l with (p. 9) | html | pdf |
- 1.3. Twinning (pp. 10-14) | html | pdf | chapter contents |
- 1.3.1. General remarks (p. 10) | html | pdf |
- 1.3.2. Twin lattices (pp. 10-12) | html | pdf |
- 1.3.2.1. Examples (pp. 11-12) | html | pdf |
- 1.3.3. Implication of twinning in reciprocal space (p. 12) | html | pdf |
- 1.3.4. Twinning by merohedry (pp. 12-14) | html | pdf |
- 1.3.5. Calculation of the twin element (p. 14) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 1.3.2.1. Lattice planes and rows that are perpendicular to each other independently of the metrical parameters (p. 11) | html | pdf |
- Table 1.3.4.1. Possible twin operations for twins by merohedry (p. 13) | html | pdf |
- Table 1.3.4.2. Simulated Laue classes, extinction symbols, simulated `possible space groups', and possible true space groups for crystals twinned by merohedry (type 2) (p. 13) | html | pdf |
- 1.4. Arithmetic crystal classes and symmorphic space groups (pp. 15-22) | html | pdf | chapter contents |
- 1.4.1. Arithmetic crystal classes (pp. 15-19) | html | pdf |
- 1.4.1.1. Arithmetic crystal classes in three dimensions (p. 15) | html | pdf |
- 1.4.1.2. Arithmetic crystal classes in one, two and higher dimensions (p. 16) | html | pdf |
- 1.4.2. Classification of space groups (pp. 20-21) | html | pdf |
- 1.4.2.1. Symmorphic space groups (p. 21) | html | pdf |
- 1.4.3. Effect of dispersion on diffraction symmetry (p. 21) | html | pdf |
- 1.4.3.1. Symmetry of the Patterson function (p. 21) | html | pdf |
- 1.4.3.2. `Laue' symmetry (p. 21) | html | pdf |
- References
| html | pdf |
- Tables
- Table 1.4.1.1. The two-dimensional arithmetic crystal classes (p. 15) | html | pdf |
- Table 1.4.2.1. The three-dimensional space groups, arranged by arithmetic crystal class (pp. 16-19) | html | pdf |
- Table 1.4.3.1. Arithmetic crystal classes classified by the number of space groups that they contain (p. 20) | html | pdf |
- Diffraction geometry and its practical realization
- 2.1. Classification of experimental techniques (pp. 24-25) | html | pdf | chapter contents |
- References
| html | pdf |
- Tables
- Table 2.1.1. Summary of main experimental techniques for structure analysis (p. 25) | html | pdf |
- 2.2. Single-crystal X-ray techniques (pp. 26-41) | html | pdf | chapter contents |
- 2.2.1. Laue geometry (pp. 26-29) | html | pdf |
- 2.2.1.1. General (pp. 26-27) | html | pdf |
- 2.2.1.2. Crystal setting (p. 27) | html | pdf |
- 2.2.1.3. Single-order and multiple-order reflections (pp. 27-29) | html | pdf |
- 2.2.1.4. Angular distribution of reflections in Laue diffraction (p. 29) | html | pdf |
- 2.2.1.5. Gnomonic and stereographic transformations (p. 29) | html | pdf |
- 2.2.2. Monochromatic methods (pp. 29-30) | html | pdf |
- 2.2.2.1. Monochromatic still exposure (p. 30) | html | pdf |
- 2.2.2.2. Crystal setting (p. 30) | html | pdf |
- 2.2.3. Rotation/oscillation geometry (pp. 31-34) | html | pdf |
- 2.2.3.1. General (p. 31) | html | pdf |
- 2.2.3.2. Diffraction coordinates (pp. 31-33) | html | pdf |
- 2.2.3.3. Relationship of reciprocal-lattice coordinates to crystal system parameters (p. 33) | html | pdf |
- 2.2.3.4. Maximum oscillation angle without spot overlap (pp. 33-34) | html | pdf |
- 2.2.3.5. Blind region (p. 34) | html | pdf |
- 2.2.4. Weissenberg geometry (pp. 34-35) | html | pdf |
- 2.2.4.1. General (p. 34) | html | pdf |
- 2.2.4.2. Recording of zero layer (p. 34) | html | pdf |
- 2.2.4.3. Recording of upper layers (pp. 34-35) | html | pdf |
- 2.2.5. Precession geometry (pp. 35-36) | html | pdf |
- 2.2.5.1. General (p. 35) | html | pdf |
- 2.2.5.2. Crystal setting (p. 35) | html | pdf |
- 2.2.5.3. Recording of zero-layer photograph (p. 35) | html | pdf |
- 2.2.5.4. Recording of upper-layer photographs (pp. 35-36) | html | pdf |
- 2.2.5.5. Recording of cone-axis photograph (p. 36) | html | pdf |
- 2.2.6. Diffractometry (pp. 36-37) | html | pdf |
- 2.2.6.1. General (p. 36) | html | pdf |
- 2.2.6.2. Normal-beam equatorial geometry (pp. 36-37) | html | pdf |
- 2.2.6.3. Fixed χ = 45° geometry with area detector (p. 37) | html | pdf |
- 2.2.7. Practical realization of diffraction geometry: sources, optics, and detectors (pp. 37-41) | html | pdf |
- 2.2.7.1. General (p. 37) | html | pdf |
- 2.2.7.2. Conventional X-ray sources: spectral character, crystal rocking curve, and spot size (pp. 37-38) | html | pdf |
- 2.2.7.3. Synchrotron X-ray sources (pp. 38-41) | html | pdf |
- 2.2.7.4. Geometric effects and distortions associated with area detectors (p. 41) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.2.3.1. Glossary of symbols used to specify quantities on diffraction patterns and in reciprocal space (p. 32) | html | pdf |
- Table 2.2.5.1. The distance displacement (in mm) measured on the film versus angular setting error of the crystal for a screenless precession () setting photograph (p. 35) | html | pdf |
- 2.3. Powder and related techniques: X-ray techniques (pp. 42-79) | html | pdf | chapter contents |
- 2.3.1. Focusing diffractometer geometries (pp. 43-54) | html | pdf |
- 2.3.1.1. Conventional reflection specimen, θ–2θ scan (pp. 44-50) | html | pdf |
- 2.3.1.1.1. Geometrical instrument parameters (pp. 44-46) | html | pdf |
- 2.3.1.1.2. Use of monochromators (p. 46) | html | pdf |
- 2.3.1.1.3. Alignment and angular calibration (pp. 46-47) | html | pdf |
- 2.3.1.1.4. Instrument broadening and aberrations (pp. 47-48) | html | pdf |
- 2.3.1.1.5. Focal line and receiving-slit widths (p. 48) | html | pdf |
- 2.3.1.1.6. Aberrations related to the specimen (pp. 48-49) | html | pdf |
- 2.3.1.1.7. Axial divergence (p. 50) | html | pdf |
- 2.3.1.1.8. Combined aberrations (p. 50) | html | pdf |
- 2.3.1.2. Transmission specimen, θ–2θ scan (pp. 50-52) | html | pdf |
- 2.3.1.3. Seemann–Bohlin method (pp. 52-53) | html | pdf |
- 2.3.1.4. Reflection specimen, θ–θ scan (p. 53) | html | pdf |
- 2.3.1.5. Microdiffractometry (pp. 53-54) | html | pdf |
- 2.3.2. Parallel-beam geometries, synchrotron radiation (pp. 54-60) | html | pdf |
- 2.3.2.1. Monochromatic radiation, θ–2θ scan (pp. 55-57) | html | pdf |
- 2.3.2.2. Cylindrical specimen, 2θ scan (pp. 57-58) | html | pdf |
- 2.3.2.3. Grazing-incidence diffraction (p. 58) | html | pdf |
- 2.3.2.4. High-resolution energy-dispersive diffraction (pp. 58-60) | html | pdf |
- 2.3.3. Specimen factors, angle, intensity, and profile-shape measurement (pp. 60-69) | html | pdf |
- 2.3.3.1. Specimen factors (pp. 60-62) | html | pdf |
- 2.3.3.1.1. Preferred orientation (pp. 60-61) | html | pdf |
- 2.3.3.1.2. Crystallite-size effects (p. 62) | html | pdf |
- 2.3.3.2. Problems arising from the Kα doublet (pp. 62-63) | html | pdf |
- 2.3.3.3. Use of peak or centroid for angle definition (p. 63) | html | pdf |
- 2.3.3.4. Rate-meter/strip-chart recording (p. 63) | html | pdf |
- 2.3.3.5. Computer-controlled automation (pp. 63-64) | html | pdf |
- 2.3.3.6. Counting statistics (pp. 64-65) | html | pdf |
- 2.3.3.7. Peak search (pp. 65-66) | html | pdf |
- 2.3.3.8. Profile fitting (pp. 66-69) | html | pdf |
- 2.3.3.9. Computer graphics for powder patterns (p. 69) | html | pdf |
- 2.3.4. Powder cameras (pp. 70-71) | html | pdf |
- 2.3.4.1. Cylindrical cameras (Debye–Scherrer) (p. 70) | html | pdf |
- 2.3.4.2. Focusing cameras (Guinier) (pp. 70-71) | html | pdf |
- 2.3.4.3. Miscellaneous camera types (p. 71) | html | pdf |
- 2.3.5. Generation, modifications, and measurement of X-ray spectra (pp. 71-79) | html | pdf |
- 2.3.5.1. X-ray tubes (pp. 71-74) | html | pdf |
- 2.3.5.1.1. Stability (p. 72) | html | pdf |
- 2.3.5.1.2. Spectral purity (p. 72) | html | pdf |
- 2.3.5.1.3. Source intensity distribution and size (p. 73) | html | pdf |
- 2.3.5.1.4. Air and window transmission (pp. 73-74) | html | pdf |
- 2.3.5.1.5. Intensity variation with take-off angle (p. 74) | html | pdf |
- 2.3.5.2. X-ray spectra (pp. 74-75) | html | pdf |
- 2.3.5.2.1. Wavelength selection (p. 75) | html | pdf |
- 2.3.5.3. Other X-ray sources (p. 75) | html | pdf |
- 2.3.5.4. Methods for modifying the spectrum (pp. 75-79) | html | pdf |
- 2.3.5.4.1. Crystal monochromators (pp. 76-78) | html | pdf |
- 2.3.5.4.2. Single and balanced filters (pp. 78-79) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.3.3.1. Preferred-orientation data for silicon (p. 61) | html | pdf |
- Table 2.3.3.2. R(Bragg) values obtained with different preferred-orientation formulae (p. 61) | html | pdf |
- Table 2.3.5.1. X-ray tube maximum ratings (p. 72) | html | pdf |
- Table 2.3.5.2. β filters for common target elements (p. 78) | html | pdf |
- Table 2.3.5.3. Calculated thickness of balanced filters for common target elements (p. 79) | html | pdf |
- 2.4. Powder and related techniques: electron and neutron techniques (pp. 80-83) | html | pdf | chapter contents |
- 2.4.1. Electron techniques (pp. 80-82) | html | pdf |
- 2.4.1.1. Powder-pattern geometry (p. 80) | html | pdf |
- 2.4.1.2. Diffraction patterns in electron microscopes (p. 80) | html | pdf |
- 2.4.1.3. Preferred orientations (p. 80) | html | pdf |
- 2.4.1.4. Powder-pattern intensities (pp. 80-81) | html | pdf |
- 2.4.1.5. Crystal-size analysis (p. 81) | html | pdf |
- 2.4.1.6. Unknown-phase identification: databases (pp. 81-82) | html | pdf |
- 2.4.2. Neutron techniques (pp. 82-83) | html | pdf |
- References
| html | pdf |
- Figures
- 2.5. Energy-dispersive techniques (pp. 84-88) | html | pdf | chapter contents |
- 2.5.1. Techniques for X-rays (pp. 84-87) | html | pdf |
- 2.5.1.1. Recording of powder diffraction spectra (p. 84) | html | pdf |
- 2.5.1.2. Incident X-ray beam (p. 84) | html | pdf |
- 2.5.1.3. Resolution (p. 85) | html | pdf |
- 2.5.1.4. Integrated intensity for powder sample (pp. 85-86) | html | pdf |
- 2.5.1.5. Corrections (p. 86) | html | pdf |
- 2.5.1.6. The Rietveld method (p. 86) | html | pdf |
- 2.5.1.7. Single-crystal diffraction (p. 86) | html | pdf |
- 2.5.1.8. Applications (pp. 86-87) | html | pdf |
- 2.5.2. White-beam and time-of-flight neutron diffraction (pp. 87-88) | html | pdf |
- 2.5.2.1. Neutron single-crystal Laue diffraction (p. 87) | html | pdf |
- 2.5.2.2. Neutron time-of-flight powder diffraction (pp. 87-88) | html | pdf |
- References
| html | pdf |
- Figures
- 2.6. Small-angle techniques (pp. 89-112) | html | pdf | chapter contents |
- 2.6.1. X-ray techniques (pp. 89-104) | html | pdf |
- 2.6.1.1. Introduction (pp. 89-90) | html | pdf |
- 2.6.1.2. General principles (pp. 90-91) | html | pdf |
- 2.6.1.3. Monodisperse systems (pp. 91-99) | html | pdf |
- 2.6.1.3.1. Parameters of a particle (pp. 91-93) | html | pdf |
- 2.6.1.3.2. Shape and structure of particles (pp. 93-97) | html | pdf |
- 2.6.1.3.2.1. Homogeneous particles (pp. 93-96) | html | pdf |
- 2.6.1.3.2.2. Hollow and inhomogeneous particles (pp. 96-97) | html | pdf |
- 2.6.1.3.3. Interparticle interference, concentration effects (pp. 97-99) | html | pdf |
- 2.6.1.4. Polydisperse systems (p. 99) | html | pdf |
- 2.6.1.5. Instrumentation (pp. 99-100) | html | pdf |
- 2.6.1.5.1. Small-angle cameras (pp. 99-100) | html | pdf |
- 2.6.1.5.2. Detectors (p. 100) | html | pdf |
- 2.6.1.6. Data evaluation and interpretation (pp. 100-103) | html | pdf |
- 2.6.1.6.1. Primary data handling (pp. 100-101) | html | pdf |
- 2.6.1.6.2. Instrumental broadening – smearing (p. 101) | html | pdf |
- 2.6.1.6.3. Smoothing, desmearing, and Fourier transformation (pp. 101-103) | html | pdf |
- 2.6.1.6.4. Direct structure analysis (p. 103) | html | pdf |
- 2.6.1.6.5. Interpretation of results (p. 103) | html | pdf |
- 2.6.1.7. Simulations and model calculations (pp. 103-104) | html | pdf |
- 2.6.1.7.1. Simulations (p. 103) | html | pdf |
- 2.6.1.7.2. Model calculation (p. 104) | html | pdf |
- 2.6.1.7.3. Calculation of scattering intensities (p. 104) | html | pdf |
- 2.6.1.7.4. Method of finite elements (p. 104) | html | pdf |
- 2.6.1.7.5. Calculation of distance-distribution functions (p. 104) | html | pdf |
- 2.6.1.8. Suggestions for further reading (p. 104) | html | pdf |
- 2.6.2. Neutron techniques (pp. 105-112) | html | pdf |
- 2.6.2.1. Relation of X-ray and neutron small-angle scattering (pp. 105-106) | html | pdf |
- 2.6.2.1.1. Wavelength (pp. 105-106) | html | pdf |
- 2.6.2.1.2. Geometry (p. 106) | html | pdf |
- 2.6.2.1.3. Correction of wavelength, slit, and detector-element effects (p. 106) | html | pdf |
- 2.6.2.2. Isotopic composition of the sample (pp. 106-107) | html | pdf |
- 2.6.2.2.1. Contrast variation (p. 107) | html | pdf |
- 2.6.2.2.2. Specific isotopic labelling (p. 107) | html | pdf |
- 2.6.2.3. Magnetic properties of the neutron (pp. 107-108) | html | pdf |
- 2.6.2.3.1. Spin-contrast variation (p. 108) | html | pdf |
- 2.6.2.4. Long wavelengths (p. 108) | html | pdf |
- 2.6.2.5. Sample environment (p. 108) | html | pdf |
- 2.6.2.6. Incoherent scattering (pp. 108-110) | html | pdf |
- 2.6.2.6.1. Absolute scaling (pp. 108-109) | html | pdf |
- 2.6.2.6.2. Detector-response correction (p. 109) | html | pdf |
- 2.6.2.6.3. Estimation of the incoherent scattering level (p. 109) | html | pdf |
- 2.6.2.6.4. Inner surface area (pp. 109-110) | html | pdf |
- 2.6.2.7. Single-particle scattering (pp. 110-112) | html | pdf |
- 2.6.2.7.1. Particle shape (p. 110) | html | pdf |
- 2.6.2.7.2. Particle mass (p. 110) | html | pdf |
- 2.6.2.7.3. Real-space considerations (pp. 110-111) | html | pdf |
- 2.6.2.7.4. Particle-size distribution (p. 111) | html | pdf |
- 2.6.2.7.5. Model fitting (p. 111) | html | pdf |
- 2.6.2.7.6. Label triangulation (p. 111) | html | pdf |
- 2.6.2.7.7. Triple isotropic replacement (pp. 111-112) | html | pdf |
- 2.6.2.8. Dense systems (p. 112) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.6.1.1. Formulae for the various parameters for h (left) and m (right) scales (p. 92) | html | pdf |
- 2.7. Topography (pp. 113-123) | html | pdf | chapter contents |
- 2.7.1. Principles (pp. 113-114) | html | pdf |
- 2.7.2. Single-crystal techniques (pp. 114-117) | html | pdf |
- 2.7.2.1. Reflection topographs (pp. 114-115) | html | pdf |
- 2.7.2.2. Transmission topographs (pp. 115-117) | html | pdf |
- 2.7.3. Double-crystal topography (pp. 117-119) | html | pdf |
- 2.7.4. Developments with synchrotron radiation (pp. 119-121) | html | pdf |
- 2.7.4.1. White-radiation topography (pp. 119-120) | html | pdf |
- 2.7.4.2. Incident-beam monochromatization (pp. 120-121) | html | pdf |
- 2.7.5. Some special techniques (pp. 121-123) | html | pdf |
- 2.7.5.1. Moiré topography (pp. 121-122) | html | pdf |
- 2.7.5.2. Real-time viewing of topograph images (pp. 122-123) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 2.7.4.1. Monolithic monochromator for plane-wave synchrotron-radiation topography (p. 121) | html | pdf |
- 2.8. Neutron diffraction topography (pp. 124-125) | html | pdf | chapter contents |
- 2.8.1. Introduction (p. 124) | html | pdf |
- 2.8.2. Implementation (p. 124) | html | pdf |
- 2.8.3. Application to investigations of heavy crystals (p. 124) | html | pdf |
- 2.8.4. Investigation of magnetic domains and magnetic phase transitions (pp. 124-125) | html | pdf |
- References
| html | pdf |
- 2.9. Neutron reflectometry (pp. 126-146) | html | pdf | chapter contents |
- 2.9.1. Introduction (p. 126) | html | pdf |
- 2.9.2. Theory of elastic specular neutron reflection (pp. 126-127) | html | pdf |
- 2.9.3. Polarized neutron reflectivity (p. 127) | html | pdf |
- 2.9.4. Surface roughness (p. 128) | html | pdf |
- 2.9.5. Experimental methodology (pp. 128-129) | html | pdf |
- 2.9.6. Resolution in real space (p. 129) | html | pdf |
- 2.9.7. Applications of neutron reflectometry (pp. 129-130) | html | pdf |
- 2.9.7.1. Self-diffusion (pp. 129-130) | html | pdf |
- 2.9.7.2. Magnetic multilayers (p. 130) | html | pdf |
- 2.9.7.3. Hydrogenous materials (p. 130) | html | pdf |
- References
| html | pdf |
- Figures
- Preparation and examination of specimens
- 3.1. Preparation, selection, and investigation of specimens (pp. 148-155) | html | pdf | chapter contents |
- 3.1.1. Crystallization (pp. 148-151) | html | pdf |
- 3.1.1.1. Introduction (p. 148) | html | pdf |
- 3.1.1.2. Crystal growth (p. 148) | html | pdf |
- 3.1.1.3. Methods of growing crystals (p. 148) | html | pdf |
- 3.1.1.4. Factors affecting the solubility of biological macromolecules (pp. 148-150) | html | pdf |
- 3.1.1.5. Screening procedures for the crystallization of biological macromolecules (p. 150) | html | pdf |
- 3.1.1.6. Automated protein crystallization (p. 150) | html | pdf |
- 3.1.1.7. Membrane proteins (pp. 150-151) | html | pdf |
- 3.1.2. Selection of single crystals (pp. 151-155) | html | pdf |
- 3.1.2.1. Introduction (p. 151) | html | pdf |
- 3.1.2.2. Size, shape, and quality (pp. 151-154) | html | pdf |
- 3.1.2.3. Optical examination [see IT A (2002), Section 10.2.4
] (pp. 154-155) | html | pdf |
- 3.1.2.4. Twinning (see Chapter 1.3
) (p. 155) | html | pdf |
- References
| html | pdf |
- Tables
- Table 3.1.1.1. Survey of crystallization techniques suitable for the crystallization of low-molecular-weight organic compounds for X-ray crystallography (p. 149) | html | pdf |
- Table 3.1.1.2. Commonly used ionic and organic precipitants (p. 150) | html | pdf |
- Table 3.1.1.3. Crystallization matrix parameters for sparse-matrix sampling (p. 151) | html | pdf |
- Table 3.1.1.4. Reservoir solutions for sparse-matrix sampling (p. 152) | html | pdf |
- Table 3.1.2.1. Use of crystal properties for selection and preliminary study of crystals (pp. 153-154) | html | pdf |
- 3.2. Determination of the density of solids (pp. 156-159) | html | pdf | chapter contents |
- 3.2.1. Introduction (p. 156) | html | pdf |
- 3.2.1.1. General precautions (p. 156) | html | pdf |
- 3.2.2. Description and discussion of techniques (pp. 156-159) | html | pdf |
- 3.2.2.1. Gradient tube (pp. 156-158) | html | pdf |
- 3.2.2.1.1. Technique (pp. 156-157) | html | pdf |
- 3.2.2.1.2. Suitable substances for columns (pp. 157-158) | html | pdf |
- 3.2.2.1.3. Sensitivity (p. 158) | html | pdf |
- 3.2.2.2. Flotation method (p. 158) | html | pdf |
- 3.2.2.3. Pycnometry (p. 158) | html | pdf |
- 3.2.2.4. Method of Archimedes (p. 158) | html | pdf |
- 3.2.2.5. Immersion microbalance (p. 158) | html | pdf |
- 3.2.2.6. Volumenometry (p. 158) | html | pdf |
- 3.2.2.7. Other procedures (pp. 158-159) | html | pdf |
- 3.2.3. Biological macromolecules (p. 159) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.2.2.1. Possible substances for use as gradient-column components (p. 157) | html | pdf |
- Table 3.2.3.1. Typical calculations of the values of VM and Vsolv for proteins (p. 159) | html | pdf |
- 3.3. Measurement of refractive index (pp. 160-161) | html | pdf | chapter contents |
- 3.3.1. Introduction (p. 160) | html | pdf |
- 3.3.2. Media for general use (p. 160) | html | pdf |
- 3.3.3. High-index media (pp. 160-161) | html | pdf |
- 3.3.4. Media for organic substances (p. 161) | html | pdf |
- References
| html | pdf |
- Tables
- Table 3.3.2.1. Immersion media for general use in the measurement of index of refraction (p. 160) | html | pdf |
- Table 3.3.4.1. Aqueous solutions for use as immersion media for organic crystals (p. 160) | html | pdf |
- Table 3.3.4.2. Organic immersion media for use with organic crystals of low solubility (p. 160) | html | pdf |
- 3.4. Mounting and setting of specimens for X-ray crystallographic studies (pp. 162-170) | html | pdf | chapter contents |
- 3.4.1. Mounting of specimens (pp. 162-167) | html | pdf |
- 3.4.1.1. Introduction (p. 162) | html | pdf |
- 3.4.1.2. Polycrystalline specimens (pp. 162-163) | html | pdf |
- 3.4.1.2.1. General (p. 162) | html | pdf |
- 3.4.1.2.2. Non-ambient conditions (pp. 162-163) | html | pdf |
- 3.4.1.3. Single crystals (small molecules) (pp. 163-165) | html | pdf |
- 3.4.1.3.1. General (pp. 163-164) | html | pdf |
- 3.4.1.3.2. Non-ambient conditions (pp. 164-165) | html | pdf |
- 3.4.1.4. Single crystals of biological macromolecules at ambient temperatures (pp. 165-166) | html | pdf |
- 3.4.1.5. Cryogenic studies of biological macromolecules (pp. 166-167) | html | pdf |
- 3.4.1.5.1. Radiation damage (p. 166) | html | pdf |
- 3.4.1.5.2. Cryoprotectants (p. 166) | html | pdf |
- 3.4.1.5.3. Crystal mounting and cooling (pp. 166-167) | html | pdf |
- 3.4.1.5.4. Cooling devices (p. 167) | html | pdf |
- 3.4.1.5.5. General (p. 167) | html | pdf |
- 3.4.2. Setting of single crystals by X-rays (pp. 167-170) | html | pdf |
- 3.4.2.1. Introduction (pp. 167-168) | html | pdf |
- 3.4.2.2. Preliminary considerations (p. 168) | html | pdf |
- 3.4.2.3. Equatorial setting using a rotation camera (p. 168) | html | pdf |
- 3.4.2.4. Precession geometry setting with moving-crystal methods (p. 168) | html | pdf |
- 3.4.2.5. Setting and orientation with stationary-crystal methods (p. 169) | html | pdf |
- 3.4.2.5.1. Laue images – white radiation (p. 169) | html | pdf |
- 3.4.2.5.2. `Still' images – monochromatic radiation (p. 169) | html | pdf |
- 3.4.2.6. Setting and orientation for crystals with large unit cells using oscillation geometry (pp. 169-170) | html | pdf |
- 3.4.2.7. Diffractometer-setting considerations (p. 170) | html | pdf |
- 3.4.2.8. Crystal setting and data-collection efficiency (p. 170) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.4.1.1. Single-crystal and powder mounting, capillary tubes and other containers (p. 163) | html | pdf |
- Table 3.4.1.2. Single-crystal mounting – adhesives (p. 164) | html | pdf |
- Table 3.4.1.3. Cryoprotectants commonly used for biological macromolecules (p. 166) | html | pdf |
- 3.5. Preparation of specimens for electron diffraction and electron microscopy (pp. 171-176) | html | pdf | chapter contents |
- 3.5.1. Ceramics and rock minerals (pp. 171-173) | html | pdf |
- 3.5.1.1. Thin fragments, particles, and flakes (p. 171) | html | pdf |
- 3.5.1.2. Thin-section preparation (pp. 171-172) | html | pdf |
- 3.5.1.3. Final thinning by argon-ion etching (pp. 172-173) | html | pdf |
- 3.5.1.4. Final thinning by chemical etching (p. 173) | html | pdf |
- 3.5.1.5. Evaporated and sputtered thin films (p. 173) | html | pdf |
- 3.5.2. Metals (pp. 173-176) | html | pdf |
- 3.5.2.1. Thin sections (p. 174) | html | pdf |
- 3.5.2.2. Final thinning methods (pp. 174-175) | html | pdf |
- 3.5.2.3. Chemical and electrochemical thinning solutions (pp. 175-176) | html | pdf |
- 3.5.3. Polymers and organic specimens (p. 176) | html | pdf |
- 3.5.3.1. Cast films (p. 176) | html | pdf |
- 3.5.3.2. Sublimed films (p. 176) | html | pdf |
- 3.5.3.3. Oriented solidification (p. 176) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 3.5.1.1. Chemical etchants used for preparing thin foils from single-crystal ceramic materials (p. 173) | html | pdf |
- Production and properties of radiations
- 4.1. Radiations used in crystallography (pp. 186-190) | html | pdf | chapter contents |
- 4.1.1. Introduction (p. 186) | html | pdf |
- 4.1.2. Electromagnetic waves and particles (pp. 186-187) | html | pdf |
- 4.1.3. Most frequently used radiations (pp. 187-188) | html | pdf |
- 4.1.4. Special applications of X-rays, electrons, and neutrons (p. 189) | html | pdf |
- 4.1.4.1. X-rays, synchrotron radiation, and γ-rays (p. 189) | html | pdf |
- 4.1.4.2. Electrons (p. 189) | html | pdf |
- 4.1.4.3. Neutrons (p. 189) | html | pdf |
- 4.1.5. Other radiations (pp. 189-190) | html | pdf |
- 4.1.5.1. Atomic and molecular beams (p. 189) | html | pdf |
- 4.1.5.2. Positrons and muons (p. 189) | html | pdf |
- 4.1.5.3. Infrared, visible, and ultraviolet light (pp. 189-190) | html | pdf |
- 4.1.5.4. Radiofrequency and microwaves (p. 190) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.1.3.1. Average diffraction properties of X-rays, electrons, and neutrons (p. 187) | html | pdf |
- 4.2. X-rays (pp. 191-258) | html | pdf | chapter contents |
- 4.2.1. Generation of X-rays (pp. 191-200) | html | pdf |
- 4.2.1.1. The characteristic line spectrum (pp. 191-192) | html | pdf |
- 4.2.1.1.1. The intensity of characteristic lines (pp. 191-192) | html | pdf |
- 4.2.1.2. The continuous spectrum (pp. 192-193) | html | pdf |
- 4.2.1.3. X-ray tubes (pp. 193-195) | html | pdf |
- 4.2.1.3.1. Power dissipation in the anode (p. 195) | html | pdf |
- 4.2.1.4. Radioactive X-ray sources (pp. 195-196) | html | pdf |
- 4.2.1.5. Synchrotron-radiation sources (pp. 196-198) | html | pdf |
- 4.2.1.6. Plasma X-ray sources (pp. 198-199) | html | pdf |
- 4.2.1.7. Other sources of X-rays (pp. 199-200) | html | pdf |
- 4.2.2. X-ray wavelengths (pp. 200-212) | html | pdf |
- 4.2.2.1. Historical introduction (pp. 200-201) | html | pdf |
- 4.2.2.2. Known problems (p. 201) | html | pdf |
- 4.2.2.3. Alternative strategies (p. 201) | html | pdf |
- 4.2.2.4. The X-ray wavelength scales, old and new (pp. 201-202) | html | pdf |
- 4.2.2.5. K-series reference wavelengths (p. 202) | html | pdf |
- 4.2.2.6. L-series reference wavelengths (p. 202) | html | pdf |
- 4.2.2.7. Absorption-edge locations (pp. 202-204) | html | pdf |
- 4.2.2.8. Outline of the theoretical procedures (pp. 204-205) | html | pdf |
- 4.2.2.9. Evaluation of the uncorrelated energy with the Dirac–Fock method (p. 205) | html | pdf |
- 4.2.2.10. Correlation and Auger shifts (p. 205) | html | pdf |
- 4.2.2.11. QED corrections (pp. 205-208) | html | pdf |
- 4.2.2.12. Structure and format of the summary tables (pp. 211-212) | html | pdf |
- 4.2.2.13. Availability of a more complete X-ray wavelength table (p. 212) | html | pdf |
- 4.2.2.14. Connection with scales used in previous literature (p. 212) | html | pdf |
- 4.2.3. X-ray absorption spectra (pp. 213-220) | html | pdf |
- 4.2.3.1. Introduction (pp. 213-214) | html | pdf |
- 4.2.3.1.1. Definitions (p. 213) | html | pdf |
- 4.2.3.1.2. Variation of X-ray attenuation coefficients with photon energy (p. 213) | html | pdf |
- 4.2.3.1.3. Normal attenuation, XAFS, and XANES (pp. 213-214) | html | pdf |
- 4.2.3.2. Techniques for the measurement of X-ray attenuation coefficients (pp. 214-215) | html | pdf |
- 4.2.3.2.1. Experimental configurations (pp. 214-215) | html | pdf |
- 4.2.3.2.2. Specimen selection (p. 215) | html | pdf |
- 4.2.3.2.3. Requirements for the absolute measurement of μl or (μ/ρ) (p. 215) | html | pdf |
- 4.2.3.3. Normal attenuation coefficients (p. 215) | html | pdf |
- 4.2.3.4. Attenuation coefficients in the neighbourhood of an absorption edge (pp. 216-219) | html | pdf |
- 4.2.3.4.1. XAFS (pp. 216-219) | html | pdf |
- 4.2.3.4.1.1. Theory (pp. 216-217) | html | pdf |
- 4.2.3.4.1.2. Techniques of data analysis (pp. 217-218) | html | pdf |
- 4.2.3.4.1.3. XAFS experiments (pp. 218-219) | html | pdf |
- 4.2.3.4.2. X-ray absorption near edge structure (XANES) (p. 219) | html | pdf |
- 4.2.3.5. Comments (p. 220) | html | pdf |
- 4.2.4. X-ray absorption (or attenuation) coefficients (pp. 220-229) | html | pdf |
- 4.2.4.1. Introduction (pp. 220-221) | html | pdf |
- 4.2.4.2. Sources of information (pp. 221-229) | html | pdf |
- 4.2.4.2.1. Theoretical photo-effect data: σpe (p. 221) | html | pdf |
- 4.2.4.2.2. Theoretical Rayleigh scattering data: σR (pp. 221-229) | html | pdf |
- 4.2.4.2.3. Theoretical Compton scattering data: σC (p. 229) | html | pdf |
- 4.2.4.3. Comparison between theoretical and experimental data sets (p. 229) | html | pdf |
- 4.2.4.4. Uncertainty in the data tables (p. 229) | html | pdf |
- 4.2.5. Filters and monochromators (pp. 229-241) | html | pdf |
- 4.2.5.1. Introduction (pp. 229-236) | html | pdf |
- 4.2.5.2. Mirrors and capillaries (pp. 236-238) | html | pdf |
- 4.2.5.2.1. Mirrors (pp. 236-237) | html | pdf |
- 4.2.5.2.2. Capillaries (p. 237) | html | pdf |
- 4.2.5.2.3. Quasi-Bragg reflectors (pp. 237-238) | html | pdf |
- 4.2.5.3. Filters (p. 238) | html | pdf |
- 4.2.5.4. Monochromators (pp. 238-241) | html | pdf |
- 4.2.5.4.1. Crystal monochromators (pp. 238-239) | html | pdf |
- 4.2.5.4.2. Laboratory monochromator systems (p. 239) | html | pdf |
- 4.2.5.4.3. Multiple-reflection monochromators for use with laboratory and synchrotron-radiation sources (pp. 239-240) | html | pdf |
- 4.2.5.4.4. Polarization (pp. 240-241) | html | pdf |
- 4.2.6. X-ray dispersion corrections (pp. 241-258) | html | pdf |
- 4.2.6.1. Definitions (pp. 242-243) | html | pdf |
- 4.2.6.1.1. Rayleigh scattering (p. 242) | html | pdf |
- 4.2.6.1.2. Thomson scattering by a free electron (p. 242) | html | pdf |
- 4.2.6.1.3. Elastic scattering from electrons bound to atoms: the atomic scattering factor, the atomic form factor, and the dispersion corrections (pp. 242-243) | html | pdf |
- 4.2.6.2. Theoretical approaches for the calculation of the dispersion corrections (pp. 243-248) | html | pdf |
- 4.2.6.2.1. The classical approach (pp. 243-244) | html | pdf |
- 4.2.6.2.2. Non-relativistic theories (pp. 244-245) | html | pdf |
- 4.2.6.2.3. Relativistic theories (pp. 245-248) | html | pdf |
- 4.2.6.2.3.1. Cromer and Liberman: relativistic dipole approach (pp. 245-246) | html | pdf |
- 4.2.6.2.3.2. The scattering matrix formalism (pp. 246-248) | html | pdf |
- 4.2.6.2.4. Intercomparison of theories (p. 248) | html | pdf |
- 4.2.6.3. Modern experimental techniques (pp. 248-258) | html | pdf |
- 4.2.6.3.1. Determination of the real part of the dispersion correction: (pp. 248-250) | html | pdf |
- 4.2.6.3.2. Determination of the real part of the dispersion correction: (pp. 250-251) | html | pdf |
- 4.2.6.3.2.1. Measurements using the dynamical theory of X-ray diffraction (pp. 250-251) | html | pdf |
- 4.2.6.3.2.2. Friedel- and Bijvoet-pair techniques (p. 251) | html | pdf |
- 4.2.6.3.3. Comparison of theory with experiment (pp. 251-258) | html | pdf |
- 4.2.6.3.3.1. Measurements in the high-energy limit (pp. 251-252) | html | pdf |
- 4.2.6.3.3.2. Measurements in the vicinity of an absorption edge (pp. 252-253) | html | pdf |
- 4.2.6.3.3.3. Accuracy in the tables of dispersion corrections (p. 253) | html | pdf |
- 4.2.6.3.3.4. Towards a tensor formalism (pp. 253-258) | html | pdf |
- 4.2.6.3.3.5. Summary (p. 258) | html | pdf |
- 4.2.6.4. Table of wavelengths, energies, and linewidths used in compiling the tables of the dispersion corrections (p. 258) | html | pdf |
- 4.2.6.5. Tables of the dispersion corrections for forward scattering, averaged polarization using the relativistic multipole approach (p. 258) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.2.1.1. Correspondence between X-ray diagram levels and electron configurations (p. 191) | html | pdf |
- Table 4.2.1.2. Correspondence between IUPAC and Siegbahn notations for X-ray diagram lines (p. 191) | html | pdf |
- Table 4.2.1.3. Copper-target X-ray tubes and their loading (p. 194) | html | pdf |
- Table 4.2.1.4. Relative permissible loading for different target materials (p. 196) | html | pdf |
- Table 4.2.1.5. Radionuclides decaying wholly by electron capture, and yielding little or no γ-radiation (p. 196) | html | pdf |
- Table 4.2.1.6. Comparison of storage-ring synchrotron-radiation sources (p. 199) | html | pdf |
- Table 4.2.1.7. Intensity gain with storage rings over conventional sources (p. 200) | html | pdf |
- Table 4.2.2.1. K-series reference wavelengths in Å (p. 203) | html | pdf |
- Table 4.2.2.2. Directly measured L-series reference wavelengths in Å (p. 204) | html | pdf |
- Table 4.2.2.3. Directly measured and emission + binding energies (see text) K-absorption edges in Å (p. 205) | html | pdf |
- Table 4.2.2.4. Wavelengths of K-emission lines and K-absorption edges in Å (pp. 206-208) | html | pdf |
- Table 4.2.2.5. Wavelengths of L-emission lines and L-absorption edges in Å (pp. 209-211) | html | pdf |
- Table 4.2.2.6. Wavelength conversion factors (p. 212) | html | pdf |
- Table 4.2.3.1. Some synchrotron-radiation facilities providing XAFS databases and analysis utilities (p. 219) | html | pdf |
- Table 4.2.4.1. Table of wavelengths and energies for the characteristic radiations used in Tables 4.2.4.2 and 4.2.4.3 (p. 221) | html | pdf |
- Table 4.2.4.2. Total phonon interaction cross section (pp. 223-229) | html | pdf |
- Table 4.2.4.3. Mass attenuation coefficients (pp. 230-236) | html | pdf |
- Table 4.2.6.1. Values of Etot/mc2 listed as a function of atomic number Z (p. 246) | html | pdf |
- Table 4.2.6.2. Comparison between the S-matrix calculations of Kissel (K) (1977) and the form-factor calculations of Cromer & Liberman (C & L) (1970, 1981, 1983) and Creagh & McAuley (C & M) for the noble gases and several common metals (p. 249) | html | pdf |
- Table 4.2.6.3. A comparison of the forward-scattering amplitudes computed using different theoretical approaches (p. 250) | html | pdf |
- Table 4.2.6.4. Comparison of measurements of the real part of the dispersion correction for LiF, Si, Al and Ge for characteristic wavelengths Ag Kα1, Mo Kα1 and Cu Kα1 with theoretical predictions (p. 252) | html | pdf |
- Table 4.2.6.5. Comparison of measurements of f′(ω, 0) for C, Si and Cu for characteristic wavelengths Ag Kα1, Mo Kα1 and Cu Kα1 with theoretical predictions (p. 253) | html | pdf |
- Table 4.2.6.6. Comparison of for copper, nickel, zirconium, and niobium for theoretical and experimental data sets (p. 254) | html | pdf |
- Table 4.2.6.7. Lists of wavelengths, energies, and linewidths used in compiling the table of dispersion corrections (p. 254) | html | pdf |
- Table 4.2.6.8. Dispersion corrections for forward scattering (pp. 255-257) | html | pdf |
- 4.3. Electron diffraction (pp. 259-429) | html | pdf | chapter contents |
C. Colliex, J. M. Cowley, S. L. Dudarev, M. Fink, J. Gjønnes, R. Hilderbrandt, A. Howie, D. F. Lynch, L. M. Peng, G. Ren, A. W. Ross, V. H. Smith Jr, J. C. H. Spence, J. W. Steeds, J. Wang, M. J. Whelan and B. B. Zvyagin - 4.3.1. Scattering factors for the diffraction of electrons by crystalline solids (pp. 259-262) | html | pdf |
- 4.3.1.1. Elastic scattering from a perfect crystal (p. 259) | html | pdf |
- 4.3.1.2. Atomic scattering factors (pp. 259-260) | html | pdf |
- 4.3.1.3. Approximations of restricted validity (p. 260) | html | pdf |
- 4.3.1.4. Relativistic effects (pp. 260-261) | html | pdf |
- 4.3.1.5. Absorption effects (p. 261) | html | pdf |
- 4.3.1.6. Tables of atomic scattering amplitudes for electrons (p. 261) | html | pdf |
- 4.3.1.7. Use of Tables 4.3.1.1 and 4.3.1.2 (pp. 261-262) | html | pdf |
- 4.3.2. Parameterizations of electron atomic scattering factors (p. 262) | html | pdf |
- 4.3.3. Complex scattering factors for the diffraction of electrons by gases (pp. 262-391) | html | pdf |
- 4.3.3.1. Introduction (p. 262) | html | pdf |
- 4.3.3.2. Complex atomic scattering factors for electrons (pp. 262-390) | html | pdf |
- 4.3.3.2.1. Elastic scattering factors for atoms (pp. 262-389) | html | pdf |
- 4.3.3.2.2. Total inelastic scattering factors (pp. 389-390) | html | pdf |
- 4.3.3.2.3. Corrections for defects in the theory of atomic scattering (p. 390) | html | pdf |
- 4.3.3.3. Molecular scattering factors for electrons (pp. 390-391) | html | pdf |
- 4.3.4. Electron energy-loss spectroscopy on solids (pp. 391-412) | html | pdf |
- 4.3.4.1. Definitions (pp. 391-394) | html | pdf |
- 4.3.4.1.1. Use of electron beams (pp. 391-392) | html | pdf |
- 4.3.4.1.2. Parameters involved in the description of a single inelastic scattering event (p. 392) | html | pdf |
- 4.3.4.1.3. Problems associated with multiple scattering (pp. 392-393) | html | pdf |
- 4.3.4.1.4. Classification of the different types of excitations contained in an electron energy-loss spectrum (pp. 393-394) | html | pdf |
- 4.3.4.2. Instrumentation (pp. 394-397) | html | pdf |
- 4.3.4.2.1. General instrumental considerations (pp. 394-395) | html | pdf |
- 4.3.4.2.2. Spectrometers (pp. 395-397) | html | pdf |
- 4.3.4.2.3. Detection systems (p. 397) | html | pdf |
- 4.3.4.3. Excitation spectrum of valence electrons (pp. 397-404) | html | pdf |
- 4.3.4.3.1. Volume plasmons (pp. 397-399) | html | pdf |
- 4.3.4.3.2. Dielectric description (pp. 399-401) | html | pdf |
- 4.3.4.3.3. Real solids (pp. 401-403) | html | pdf |
- 4.3.4.3.4. Surface plasmons (pp. 403-404) | html | pdf |
- 4.3.4.4. Excitation spectrum of core electrons (pp. 404-411) | html | pdf |
- 4.3.4.4.1. Definition and classification of core edges (pp. 404-406) | html | pdf |
- 4.3.4.4.2. Bethe theory for inelastic scattering by an isolated atom (Bethe, 1930; Inokuti, 1971; Inokuti, Itikawa & Turner, 1978, 1979) (pp. 406-408) | html | pdf |
- 4.3.4.4.3. Solid-state effects (pp. 408-410) | html | pdf |
- 4.3.4.4.4. Applications for core-loss spectroscopy (pp. 410-411) | html | pdf |
- 4.3.4.5. Conclusions (pp. 411-412) | html | pdf |
- 4.3.5. Oriented texture patterns (pp. 412-414) | html | pdf |
- 4.3.5.1. Texture patterns (p. 412) | html | pdf |
- 4.3.5.2. Lattice plane oriented perpendicular to a direction (lamellar texture) (pp. 412-413) | html | pdf |
- 4.3.5.3. Lattice direction oriented parallel to a direction (fibre texture) (pp. 413-414) | html | pdf |
- 4.3.5.4. Applications to metals and organic materials (p. 414) | html | pdf |
- 4.3.6. Computation of dynamical wave amplitudes (pp. 414-416) | html | pdf |
- 4.3.6.1. The multislice method (pp. 414-415) | html | pdf |
- 4.3.6.2. The Bloch-wave method (pp. 415-416) | html | pdf |
- 4.3.7. Measurement of structure factors and determination of crystal thickness by electron diffraction (pp. 416-419) | html | pdf |
- 4.3.8. Crystal structure determination by high-resolution electron microscopy (pp. 419-429) | html | pdf |
- 4.3.8.1. Introduction (pp. 419-421) | html | pdf |
- 4.3.8.2. Lattice-fringe images (pp. 421-422) | html | pdf |
- 4.3.8.3. Crystal structure images (pp. 422-424) | html | pdf |
- 4.3.8.4. Parameters affecting HREM images (pp. 424-425) | html | pdf |
- 4.3.8.5. Computing methods (pp. 425-427) | html | pdf |
- 4.3.8.6. Resolution and hyper-resolution (p. 427) | html | pdf |
- 4.3.8.7. Alternative methods (pp. 427-428) | html | pdf |
- 4.3.8.8. Combined use of HREM and electron diffraction (pp. 428-429) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.3.1.1. Atomic scattering amplitudes (Å) for electrons for neutral atoms (pp. 263-271) | html | pdf |
- Table 4.3.1.2. Atomic scattering amplitudes (Å) for electrons for ionized atoms (pp. 272-281) | html | pdf |
- Table 4.3.2.1. Parameters useful in electron diffraction as a function of accelerating voltage (p. 281) | html | pdf |
- Table 4.3.2.2. Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0 Å−1 (pp. 282-283) | html | pdf |
- Table 4.3.2.3. Elastic atomic scattering factors of electrons for neutral atoms and s up to 6.0 Å−1 (pp. 284-285) | html | pdf |
- Table 4.3.3.1.
Partial wave elastic scattering factors for neutral atomsinteractive version (pp. 286-377) | html | pdf |
- Table 4.3.3.2. Inelastic scattering factors (pp. 378-388) | html | pdf |
- Table 4.3.4.1. Different possibilities for using EELS information as a function of the different accessible parameters (r, , ΔE) (p. 394) | html | pdf |
- Table 4.3.4.2. Plasmon energies measured (and calculated) for a few simple metals (p. 397) | html | pdf |
- Table 4.3.4.3. Experimental and theoretical values for the coefficient α in the plasmon dispersion curve together with estimates of the cut-off wavevector (p. 398) | html | pdf |
- Table 4.3.4.4. Comparison of measured and calculated values for the halfwidth ΔE1/2(0) of the plasmon line (p. 398) | html | pdf |
- 4.4. Neutron techniques (pp. 430-487) | html | pdf | chapter contents |
- 4.4.1. Production of neutrons (pp. 430-431) | html | pdf |
- 4.4.2. Beam-definition devices (pp. 431-443) | html | pdf |
- 4.4.2.1. Introduction (p. 431) | html | pdf |
- 4.4.2.2. Collimators (pp. 431-432) | html | pdf |
- 4.4.2.3. Crystal monochromators (pp. 432-435) | html | pdf |
- 4.4.2.4. Mirror reflection devices (pp. 435-438) | html | pdf |
- 4.4.2.4.1. Neutron guides (pp. 435-436) | html | pdf |
- 4.4.2.4.2. Focusing mirrors (p. 436) | html | pdf |
- 4.4.2.4.3. Multilayers (pp. 436-437) | html | pdf |
- 4.4.2.4.4. Capillary optics (pp. 437-438) | html | pdf |
- 4.4.2.5. Filters (p. 438) | html | pdf |
- 4.4.2.6. Polarizers (pp. 438-442) | html | pdf |
- 4.4.2.6.1. Single-crystal polarizers (pp. 438-439) | html | pdf |
- 4.4.2.6.2. Polarizing mirrors (p. 440) | html | pdf |
- 4.4.2.6.3. Polarizing filters (pp. 440-441) | html | pdf |
- 4.4.2.6.4. Zeeman polarizer (p. 442) | html | pdf |
- 4.4.2.7. Spin-orientation devices (pp. 442-443) | html | pdf |
- 4.4.2.7.1. Maintaining the direction of polarization (p. 442) | html | pdf |
- 4.4.2.7.2. Rotation of the polarization direction (p. 442) | html | pdf |
- 4.4.2.7.3. Flipping of the polarization direction (pp. 442-443) | html | pdf |
- 4.4.2.8. Mechanical choppers and selectors (p. 443) | html | pdf |
- 4.4.3. Resolution functions (pp. 443-444) | html | pdf |
- 4.4.4. Scattering lengths for neutrons (pp. 444-454) | html | pdf |
- 4.4.4.1. Scattering lengths (p. 444) | html | pdf |
- 4.4.4.2. Scattering and absorption cross sections (p. 452) | html | pdf |
- 4.4.4.3. Isotope effects (pp. 452-453) | html | pdf |
- 4.4.4.4. Correction for electromagnetic interactions (p. 453) | html | pdf |
- 4.4.4.5. Measurement of scattering lengths (p. 453) | html | pdf |
- 4.4.4.6. Compilation of scattering lengths and cross sections (pp. 453-454) | html | pdf |
- 4.4.5. Magnetic form factors (pp. 454-461) | html | pdf |
- 4.4.6. Absorption coefficients for neutrons (p. 461) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 4.4.2.1. Some important properties of materials used for neutron monochromator crystals (p. 433) | html | pdf |
- Table 4.4.2.2. Neutron scattering-length densities, Nbcoh, for some commonly used materials (p. 435) | html | pdf |
- Table 4.4.2.3. Characteristics of some typical elements and isotopes used as neutron filters (p. 439) | html | pdf |
- Table 4.4.2.4. Properties of polarizing crystal monochromators (p. 440) | html | pdf |
- Table 4.4.2.5. Scattering-length densities for some typical materials used for polarizing multilayers (p. 441) | html | pdf |
- Table 4.4.4.1.
Bound scattering lengths, b, in fm and cross sections, σ, in barns (1 barn = 100 fm2) of the elements and their isotopesinteractive version (pp. 445-452) | html | pdf |
- Table 4.4.5.1. 〈j0〉 form factors for 3d transition elements and their ions (p. 454) | html | pdf |
- Table 4.4.5.2. 〈j0〉 form factors for 4d atoms and their ions (p. 455) | html | pdf |
- Table 4.4.5.3. 〈j0〉 form factors for rare-earth ions (p. 455) | html | pdf |
- Table 4.4.5.4. 〈j0〉 form factors for actinide ions (p. 455) | html | pdf |
- Table 4.4.5.5. 〈j2〉 form factors for 3d transition elements and their ions (p. 456) | html | pdf |
- Table 4.4.5.6. 〈j2〉 form factors for 4d atoms and their ions (p. 457) | html | pdf |
- Table 4.4.5.7. 〈j2〉 form factors for rare-earth ions (p. 457) | html | pdf |
- Table 4.4.5.8. 〈j2〉 form factors for actinide ions (p. 457) | html | pdf |
- Table 4.4.5.9. 〈j4〉 form factors for 3d atoms and their ions (p. 458) | html | pdf |
- Table 4.4.5.10. 〈j4〉 form factors for 4d atoms and their ions (p. 459) | html | pdf |
- Table 4.4.5.11. 〈j4〉 form factors for rare-earth ions (p. 459) | html | pdf |
- Table 4.4.5.12. 〈j4〉 form factors for actinide ions (p. 459) | html | pdf |
- Table 4.4.5.13. 〈j6〉 form factors for rare-earth ions (p. 460) | html | pdf |
- Table 4.4.5.14. 〈j6〉 form factors for actinide ions (p. 460) | html | pdf |
- Table 4.4.6.1. Absorption of the elements for neutrons (p. 461) | html | pdf |
- Determination of lattice parameters
- 5.2. X-ray diffraction methods: polycrystalline (pp. 491-504) | html | pdf | chapter contents |
- 5.2.1. Introduction (pp. 491-492) | html | pdf |
- 5.2.1.1. The techniques available (p. 491) | html | pdf |
- 5.2.1.2. Errors and aberrations: general discussion (p. 491) | html | pdf |
- 5.2.1.3. Errors of the Bragg angle (p. 491) | html | pdf |
- 5.2.1.4. Bragg angle: operational definitions (pp. 491-492) | html | pdf |
- 5.2.2. Wavelength and related problems (pp. 492-493) | html | pdf |
- 5.2.2.1. Errors and uncertainties in wavelength (p. 492) | html | pdf |
- 5.2.2.2. Refraction (p. 492) | html | pdf |
- 5.2.2.3. Statistical fluctuations (pp. 492-493) | html | pdf |
- 5.2.3. Geometrical and physical aberrations (pp. 493-494) | html | pdf |
- 5.2.3.1. Aberrations (p. 493) | html | pdf |
- 5.2.3.2. Extrapolation, graphical and analytical (pp. 493-494) | html | pdf |
- 5.2.4. Angle-dispersive diffractometer methods: conventional sources (p. 495) | html | pdf |
- 5.2.5. Angle-dispersive diffractometer methods: synchrotron sources (pp. 495-496) | html | pdf |
- 5.2.6. Whole-pattern methods (p. 496) | html | pdf |
- 5.2.7. Energy-dispersive techniques (pp. 496-497) | html | pdf |
- 5.2.8. Camera methods (pp. 497-498) | html | pdf |
- 5.2.9. Testing for remanent systematic error (p. 498) | html | pdf |
- 5.2.10. Powder-diffraction standards (pp. 498-499) | html | pdf |
- 5.2.11. Intensity standards (p. 500) | html | pdf |
- 5.2.12. Instrumental line-profile-shape standards (p. 501) | html | pdf |
- 5.2.13. Factors determining accuracy (pp. 501-504) | html | pdf |
- References
| html | pdf |
- Tables
- Table 5.2.1.1. Functions of the cell angles in equation (5.2.1.3) for the possible unit cells (p. 492) | html | pdf |
- Table 5.2.4.1. Centroid displacement 〈Δθ/θ〉 and variance W of certain aberrations of an angle-dispersive diffractometer (p. 494) | html | pdf |
- Table 5.2.7.1. Centroid displacement and variance W of certain aberrations of an energy-dispersive diffractometer (p. 497) | html | pdf |
- Table 5.2.8.1. Some geometrical aberrations in the Debye–Scherrer method (p. 498) | html | pdf |
- Table 5.2.10.1. NIST values for silicon standards (p. 499) | html | pdf |
- Table 5.2.10.2. Reflection angles (°) for tungsten, silver, and silicon (p. 499) | html | pdf |
- Table 5.2.10.3. Silicon standard reflection angles (°) (p. 500) | html | pdf |
- Table 5.2.10.4. Silicon standard high reflection angles (°) (p. 501) | html | pdf |
- Table 5.2.10.5. Tungsten reflection angles (°) (p. 502) | html | pdf |
- Table 5.2.10.6. Fluorophlogopite 00l standard reflection angles (p. 503) | html | pdf |
- Table 5.2.10.7. Silver behenate 00l standard reflection angles (p. 503) | html | pdf |
- Table 5.2.11.1. NIST intensity standards, SRM 674 (p. 503) | html | pdf |
- 5.3. X-ray diffraction methods: single crystal (pp. 505-536) | html | pdf | chapter contents |
- 5.3.1. Introduction (pp. 505-508) | html | pdf |
- 5.3.1.1. General remarks (pp. 505-506) | html | pdf |
- 5.3.1.2. Introduction to single-crystal methods (pp. 506-508) | html | pdf |
- 5.3.2. Photographic methods (pp. 508-516) | html | pdf |
- 5.3.2.1. Introduction (p. 508) | html | pdf |
- 5.3.2.2. The Laue method (p. 508) | html | pdf |
- 5.3.2.3. Moving-crystal methods (pp. 508-510) | html | pdf |
- 5.3.2.3.1. Rotating-crystal method (pp. 508-509) | html | pdf |
- 5.3.2.3.2. Moving-film methods (p. 509) | html | pdf |
- 5.3.2.3.3. Combined methods (p. 509) | html | pdf |
- 5.3.2.3.4. Accurate and precise lattice-parameter determinations (pp. 509-510) | html | pdf |
- 5.3.2.3.5. Photographic cameras for investigation of small lattice-parameter changes (p. 510) | html | pdf |
- 5.3.2.4. The Kossel method and divergent-beam techniques (pp. 510-516) | html | pdf |
- 5.3.2.4.1. The principle (pp. 510-512) | html | pdf |
- 5.3.2.4.2. Review of methods of accurate lattice-parameter determination (pp. 512-515) | html | pdf |
- 5.3.2.4.3. Accuracy and precision (p. 515) | html | pdf |
- 5.3.2.4.4. Applications (pp. 515-516) | html | pdf |
- 5.3.3. Methods with counter recording (pp. 516-534) | html | pdf |
- 5.3.3.1. Introduction (p. 516) | html | pdf |
- 5.3.3.2. Standard diffractometers (pp. 516-517) | html | pdf |
- 5.3.3.2.1. Four-circle diffractometer (pp. 516-517) | html | pdf |
- 5.3.3.2.2. Two-circle diffractometer (p. 517) | html | pdf |
- 5.3.3.3. Data processing and optimization of the experiment (pp. 517-520) | html | pdf |
- 5.3.3.3.1. Models of the diffraction profile (pp. 517-519) | html | pdf |
- 5.3.3.3.2. Precision and accuracy of the Bragg-angle determination; optimization of the experiment (pp. 519-520) | html | pdf |
- 5.3.3.4. One-crystal spectrometers (pp. 521-526) | html | pdf |
- 5.3.3.4.1. General characteristics (p. 521) | html | pdf |
- 5.3.3.4.2. Development of methods based on an asymmetric arrangement and their applications (pp. 521-522) | html | pdf |
- 5.3.3.4.3. The Bond method (pp. 522-526) | html | pdf |
- 5.3.3.4.3.1. Description of the method (pp. 522-523) | html | pdf |
- 5.3.3.4.3.2. Systematic errors (pp. 523-524) | html | pdf |
- 5.3.3.4.3.3. Development of the Bond method and its applications (pp. 524-525) | html | pdf |
- 5.3.3.4.3.4. Advantages and disadvantages of the Bond method (p. 526) | html | pdf |
- 5.3.3.5. Limitations of traditional methods (p. 526) | html | pdf |
- 5.3.3.6. Multiple-diffraction methods (pp. 526-528) | html | pdf |
- 5.3.3.7. Multiple-crystal – pseudo-non-dispersive techniques (pp. 528-533) | html | pdf |
- 5.3.3.7.1. Double-crystal spectrometers (pp. 528-530) | html | pdf |
- 5.3.3.7.2. Triple-crystal spectrometers (pp. 530-531) | html | pdf |
- 5.3.3.7.3. Multiple-beam methods (p. 531) | html | pdf |
- 5.3.3.7.4. Combined methods (pp. 531-533) | html | pdf |
- 5.3.3.8. Optical and X-ray interferometry – a non-dispersive technique (pp. 533-534) | html | pdf |
- 5.3.3.9. Lattice-parameter and wavelength standards (p. 534) | html | pdf |
- 5.3.4. Final remarks (pp. 534-536) | html | pdf |
- References
| html | pdf |
- Figures
- 5.4. Electron-diffraction methods (pp. 537-540) | html | pdf | chapter contents |
- 5.4.1. Determination of cell parameters from single-crystal patterns (pp. 537-538) | html | pdf |
- 5.4.1.1. Introduction (pp. 537-538) | html | pdf |
- 5.4.1.2. Zero-zone analysis (p. 538) | html | pdf |
- 5.4.1.3. Non-zero-zone analysis (p. 538) | html | pdf |
- 5.4.2. Kikuchi and HOLZ techniques (pp. 538-540) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 5.4.1.1. Unit-cell information available for photographic recording (p. 537) | html | pdf |
- Interpretation of diffracted intensities
- 6.1. Intensity of diffracted intensities (pp. 554-595) | html | pdf | chapter contents |
- 6.1.1. X-ray scattering (pp. 554-590) | html | pdf |
- 6.1.1.1. Coherent (Rayleigh) scattering (p. 554) | html | pdf |
- 6.1.1.2. Incoherent (Compton) scattering (p. 554) | html | pdf |
- 6.1.1.3. Atomic scattering factor (pp. 554-565) | html | pdf |
- 6.1.1.3.1. Scattering-factor interpolation (p. 565) | html | pdf |
- 6.1.1.4. Generalized scattering factors (pp. 565-584) | html | pdf |
- 6.1.1.5. The temperature factor (pp. 584-585) | html | pdf |
- 6.1.1.6. The generalized temperature factor (pp. 585-590) | html | pdf |
- 6.1.1.6.1. Gram–Charlier series (p. 586) | html | pdf |
- 6.1.1.6.2. Fourier-invariant expansions (pp. 586-588) | html | pdf |
- 6.1.1.6.3. Cumulant expansion (p. 588) | html | pdf |
- 6.1.1.6.4. Curvilinear density functions (pp. 588-589) | html | pdf |
- 6.1.1.6.5. Model-based curvilinear density functions (pp. 589-590) | html | pdf |
- 6.1.1.6.6. The quasi-Gaussian approximation for curvilinear motion (p. 590) | html | pdf |
- 6.1.1.7. Structure factor (p. 590) | html | pdf |
- 6.1.1.8. Reflecting power of a crystal (p. 590) | html | pdf |
- 6.1.2. Magnetic scattering of neutrons (pp. 590-593) | html | pdf |
- 6.1.2.1. Glossary of symbols (pp. 590-591) | html | pdf |
- 6.1.2.2. General formulae for the magnetic cross section (p. 591) | html | pdf |
- 6.1.2.3. Calculation of magnetic structure factors and cross sections (p. 591) | html | pdf |
- 6.1.2.4. The magnetic form factor (p. 592) | html | pdf |
- 6.1.2.5. The scattering cross section for polarized neutrons (pp. 592-593) | html | pdf |
- 6.1.2.6. Rotation of the polarization of the scattered neutrons (p. 593) | html | pdf |
- 6.1.3. Nuclear scattering of neutrons (pp. 593-595) | html | pdf |
- 6.1.3.1. Glossary of symbols (p. 593) | html | pdf |
- 6.1.3.2. Scattering by a single nucleus (pp. 593-594) | html | pdf |
- 6.1.3.3. Scattering by a single atom (p. 594) | html | pdf |
- 6.1.3.4. Scattering by a single crystal (pp. 594-595) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 6.1.1.1. Mean atomic scattering factors in electrons for free atoms (pp. 555-564) | html | pdf |
- Table 6.1.1.2. Spherical bonded hydrogen-atom scattering factors (p. 565) | html | pdf |
- Table 6.1.1.3. Mean atomic scattering factors in electrons for chemically significant ions (pp. 566-577) | html | pdf |
- Table 6.1.1.4. Coefficients for analytical approximation to the scattering factors of Tables 6.1.1.1 and 6.1.1.3 (pp. 578-580) | html | pdf |
- Table 6.1.1.5. Coefficients for analytical approximation to the scattering factors of Table 6.1.1.1 for the range 2.0 < (sin )/λ < 6.0 Å−1 [equation (6.1.1.16)] (p. 581) | html | pdf |
- Table 6.1.1.6. Angle dependence of multipole functions, normalized as in equation (6.1.1.23); ω = cos and S, D, Q, O, H denote scalar, dipole, quadrupole, octupole, and hexadecapole terms, respectively (p. 583) | html | pdf |
- Table 6.1.1.7. Indices allowed by the site symmetry for the real form of the spherical harmonics (p. 584) | html | pdf |
- Table 6.1.1.8. Cubic harmonics for cubic site symmetries (p. 585) | html | pdf |
- Table 6.1.1.9. fnl(α, S) = ∫∞0rn exp(−αr)jl(Sr) dr (p. 586) | html | pdf |
- Table 6.1.1.10. Indices nmp allowed by the site symmetry for the functions (p. 586) | html | pdf |
- Table 6.1.1.11. Indices nx, ny, nz allowed for the basis functions Hnx(Ax)Hny(By)Hnz(Cz) (p. 587) | html | pdf |
- 6.2. Trigonometric intensity factors (pp. 596-598) | html | pdf | chapter contents |
- 6.2.1. Expressions for intensity of diffraction (p. 596) | html | pdf |
- 6.2.2. The polarization factor (p. 596) | html | pdf |
- 6.2.3. The angular-velocity factor (p. 596) | html | pdf |
- 6.2.4. The Lorentz factor (p. 596) | html | pdf |
- 6.2.5. Special factors in the powder method (pp. 596-598) | html | pdf |
- 6.2.6. Some remarks about the integrated reflection power ratio formulae for single-crystal slabs (p. 598) | html | pdf |
- 6.2.7. Other factors (p. 598) | html | pdf |
- References
| html | pdf |
- Tables
- Table 6.2.1.1. Summary of formulae for integrated powers of reflection (pp. 597-598) | html | pdf |
- 6.3. X-ray absorption (pp. 599-608) | html | pdf | chapter contents |
- 6.3.1. Linear absorption coefficient (pp. 599-600) | html | pdf |
- 6.3.1.1. True or photoelectric absorption (p. 599) | html | pdf |
- 6.3.1.2. Scattering (p. 599) | html | pdf |
- 6.3.1.3. Extinction (pp. 599-600) | html | pdf |
- 6.3.1.4. Attenuation (mass absorption) coefficients (p. 600) | html | pdf |
- 6.3.2. Dispersion (p. 600) | html | pdf |
- 6.3.3. Absorption corrections (pp. 600-608) | html | pdf |
- 6.3.3.1. Special cases (p. 600) | html | pdf |
- 6.3.3.2. Cylinders and spheres (pp. 600-604) | html | pdf |
- 6.3.3.3. Analytical method for crystals with regular faces (pp. 604-606) | html | pdf |
- 6.3.3.4. Gaussian integration (pp. 606-607) | html | pdf |
- 6.3.3.5. Empirical methods (pp. 607-608) | html | pdf |
- 6.3.3.6. Measuring crystals for absorption (p. 608) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 6.3.3.1. Transmission coefficients (p. 601) | html | pdf |
- Table 6.3.3.2. Values of A* for cylinders (p. 602) | html | pdf |
- Table 6.3.3.3. Values of A* for spheres (p. 602) | html | pdf |
- Table 6.3.3.4. Values of (1/A*)(dA*/dμR) for spheres (p. 603) | html | pdf |
- Table 6.3.3.5. Coefficients for interpolation of A* and (p. 603) | html | pdf |
- 6.4. The flow of radiation in a real crystal (pp. 609-616) | html | pdf | chapter contents |
- 6.4.1. Introduction (p. 609) | html | pdf |
- 6.4.2. The model of a real crystal (p. 609) | html | pdf |
- 6.4.3. Primary and secondary extinction (pp. 609-610) | html | pdf |
- 6.4.4. Radiation flow (p. 610) | html | pdf |
- 6.4.5. Primary extinction (p. 610) | html | pdf |
- 6.4.6. The finite crystal (p. 610) | html | pdf |
- 6.4.7. Angular variation of E (p. 610) | html | pdf |
- 6.4.8. The value of x (pp. 610-611) | html | pdf |
- 6.4.9. Secondary extinction (p. 611) | html | pdf |
- 6.4.10. The extinction factor (p. 611) | html | pdf |
- 6.4.10.1. The correlated block model (p. 611) | html | pdf |
- 6.4.10.2. The uncorrelated block model (p. 611) | html | pdf |
- 6.4.11. Polarization (pp. 611-612) | html | pdf |
- 6.4.12. Anisotropy (p. 612) | html | pdf |
- 6.4.13. Asymptotic behaviour of the integrated intensity (p. 612) | html | pdf |
- 6.4.13.1. Non-absorbing crystal, strong primary extinction (p. 612) | html | pdf |
- 6.4.13.2. Non-absorbing crystal, strong secondary extinction (p. 612) | html | pdf |
- 6.4.13.3. The absorbing crystal (p. 612) | html | pdf |
- 6.4.14. Relationship with the dynamical theory (p. 612) | html | pdf |
- 6.4.15. Definitions (p. 612) | html | pdf |
- References
| html | pdf |
- Measurement of intensities
- 7.1. Detectors for X-rays (pp. 618-638) | html | pdf | chapter contents |
- 7.1.1. Photographic film (p. 618) | html | pdf |
- 7.1.1.1. Visual estimation (p. 618) | html | pdf |
- 7.1.1.2. Densitometry (p. 618) | html | pdf |
- 7.1.2. Geiger counters (pp. 618-619) | html | pdf |
- 7.1.3. Proportional counters (p. 619) | html | pdf |
- 7.1.3.1. The detector system (p. 619) | html | pdf |
- 7.1.3.2. Proportional counters (p. 619) | html | pdf |
- 7.1.3.3. Position-sensitive detectors (p. 619) | html | pdf |
- 7.1.3.4. Resolution, discrimination, efficiency (p. 619) | html | pdf |
- 7.1.4. Scintillation and solid-state detectors (pp. 619-622) | html | pdf |
- 7.1.4.1. Scintillation counters (pp. 619-620) | html | pdf |
- 7.1.4.2. Solid-state detectors (p. 620) | html | pdf |
- 7.1.4.3. Energy resolution and pulse-amplitude discrimination (pp. 620-621) | html | pdf |
- 7.1.4.4. Quantum-counting efficiency and linearity (pp. 621-622) | html | pdf |
- 7.1.4.5. Escape peaks (p. 622) | html | pdf |
- 7.1.5. Energy-dispersive detectors (pp. 622-623) | html | pdf |
- 7.1.6. Position-sensitive detectors (pp. 623-633) | html | pdf |
- 7.1.6.1. Choice of detector (pp. 623-626) | html | pdf |
- 7.1.6.1.1. Detection efficiency (p. 624) | html | pdf |
- 7.1.6.1.2. Linearity of response (pp. 624-625) | html | pdf |
- 7.1.6.1.3. Dynamic range (p. 625) | html | pdf |
- 7.1.6.1.4. Spatial resolution (p. 625) | html | pdf |
- 7.1.6.1.5. Uniformity of response (p. 625) | html | pdf |
- 7.1.6.1.6. Spatial distortion (p. 625) | html | pdf |
- 7.1.6.1.7. Energy discrimination (pp. 625-626) | html | pdf |
- 7.1.6.1.8. Suitability for dynamic measurements (p. 626) | html | pdf |
- 7.1.6.1.9. Stability (p. 626) | html | pdf |
- 7.1.6.1.10. Size and weight (p. 626) | html | pdf |
- 7.1.6.2. Gas-filled counters (pp. 626-629) | html | pdf |
- 7.1.6.2.1. Localization of the detected photon (p. 627) | html | pdf |
- 7.1.6.2.2. Parallel-plate counters (pp. 627-628) | html | pdf |
- 7.1.6.2.3. Current ionization PSD's (pp. 628-629) | html | pdf |
- 7.1.6.3. Semiconductor detectors (pp. 629-630) | html | pdf |
- 7.1.6.3.1. X-ray-sensitive semiconductor PSD's (pp. 629-630) | html | pdf |
- 7.1.6.3.2. Light-sensitive semiconductor PSD's (p. 630) | html | pdf |
- 7.1.6.3.3. Electron-sensitive PSD's (p. 630) | html | pdf |
- 7.1.6.4. Devices with an X-ray-sensitive photocathode (p. 630) | html | pdf |
- 7.1.6.5. Television area detectors with external phosphor (pp. 630-632) | html | pdf |
- 7.1.6.5.1. X-ray phosphors (p. 631) | html | pdf |
- 7.1.6.5.2. Light coupling (p. 632) | html | pdf |
- 7.1.6.5.3. Image intensifiers (p. 632) | html | pdf |
- 7.1.6.5.4. TV camera tubes (p. 632) | html | pdf |
- 7.1.6.6. Some applications (pp. 632-633) | html | pdf |
- 7.1.7. X-ray-sensitive TV cameras (pp. 633-635) | html | pdf |
- 7.1.7.1. Signal-to-noise ratio (pp. 633-634) | html | pdf |
- 7.1.7.2. Imaging system (pp. 634-635) | html | pdf |
- 7.1.7.3. Image processing (p. 635) | html | pdf |
- 7.1.8. Storage phosphors (pp. 635-638) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.1.6.1. The importance of some detector properties for different X-ray patterns (p. 624) | html | pdf |
- Table 7.1.6.2. X-ray phosphors (from Arndt, 1982) (p. 631) | html | pdf |
- 7.2. Detectors for electrons (pp. 639-643) | html | pdf | chapter contents |
- 7.2.1. Introduction (p. 639) | html | pdf |
- 7.2.2. Characterization of detectors (pp. 639-640) | html | pdf |
- 7.2.3. Parallel detectors (pp. 640-642) | html | pdf |
- 7.2.3.1. Fluorescent screens (p. 640) | html | pdf |
- 7.2.3.2. Photographic emulsions (pp. 640-641) | html | pdf |
- 7.2.3.3. Detector systems based on an electron-tube device (p. 641) | html | pdf |
- 7.2.3.4. Electronic detection systems based on solid-state devices (p. 641) | html | pdf |
- 7.2.3.5. Imaging plates (pp. 641-642) | html | pdf |
- 7.2.4. Serial detectors (pp. 642-643) | html | pdf |
- 7.2.4.1. Faraday cage (p. 642) | html | pdf |
- 7.2.4.2. Scintillation detectors (p. 642) | html | pdf |
- 7.2.4.3. Semiconductor detectors (pp. 642-643) | html | pdf |
- 7.2.5. Conclusions (p. 643) | html | pdf |
- References
| html | pdf |
- 7.3. Thermal neutron detection (pp. 644-652) | html | pdf | chapter contents |
- 7.3.1. Introduction (p. 644) | html | pdf |
- 7.3.2. Neutron capture (p. 644) | html | pdf |
- 7.3.3. Neutron detection processes (pp. 644-648) | html | pdf |
- 7.3.3.1. Detection via gas converter and gas ionization: the gas detector (pp. 644-645) | html | pdf |
- 7.3.3.2. Detection via solid converter and gas ionization: the foil detector (p. 645) | html | pdf |
- 7.3.3.3. Detection via scintillation (pp. 645-646) | html | pdf |
- 7.3.3.4. Films (pp. 646-648) | html | pdf |
- 7.3.4. Electronic aspects of neutron detection (pp. 648-649) | html | pdf |
- 7.3.4.1. The electronic chain (p. 648) | html | pdf |
- 7.3.4.2. Controls and adjustments of the electronics (pp. 648-649) | html | pdf |
- 7.3.5. Typical detection systems (pp. 649-650) | html | pdf |
- 7.3.5.1. Single detectors (p. 649) | html | pdf |
- 7.3.5.2. Position-sensitive detectors (pp. 649-650) | html | pdf |
- 7.3.5.3. Banks of detectors (p. 650) | html | pdf |
- 7.3.6. Characteristics of detection systems (p. 651) | html | pdf |
- 7.3.7. Corrections to the intensity measurements depending on the detection system (p. 652) | html | pdf |
- 7.3.7.1. Single detector (p. 652) | html | pdf |
- 7.3.7.2. Banks of detectors (p. 652) | html | pdf |
- 7.3.7.3. Position-sensitive detectors (p. 652) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.3.2.1. Neutron capture reactions used in neutron detection (p. 645) | html | pdf |
- Table 7.3.3.1. Commonly used detection processes (p. 646) | html | pdf |
- Table 7.3.3.2. A few examples of gas-detector characteristics (p. 646) | html | pdf |
- Table 7.3.5.1. Characteristics of some PSDs (p. 651) | html | pdf |
- 7.4. Correction of systematic errors (pp. 653-665) | html | pdf | chapter contents |
- 7.4.1. Absorption (p. 653) | html | pdf |
- 7.4.2. Thermal diffuse scattering (pp. 653-657) | html | pdf |
- 7.4.2.1. Glossary of symbols (pp. 653-654) | html | pdf |
- 7.4.2.2. TDS correction factor for X-rays (single crystals) (pp. 654-656) | html | pdf |
- 7.4.2.2.1. Evaluation of J(q) (pp. 654-655) | html | pdf |
- 7.4.2.2.2. Calculation of α (pp. 655-656) | html | pdf |
- 7.4.2.3. TDS correction factor for thermal neutrons (single crystals) (pp. 656-657) | html | pdf |
- 7.4.2.4. Correction factor for powders (p. 657) | html | pdf |
- 7.4.3. Compton scattering (pp. 657-661) | html | pdf |
- 7.4.3.1. Introduction (p. 657) | html | pdf |
- 7.4.3.2. Non-relativistic calculations of the incoherent scattering cross section (pp. 657-659) | html | pdf |
- 7.4.3.2.1. Semi-classical radiation theory (pp. 657-659) | html | pdf |
- 7.4.3.2.2. Thomas–Fermi model (p. 659) | html | pdf |
- 7.4.3.2.3. Exact calculations (p. 659) | html | pdf |
- 7.4.3.3. Relativistic treatment of incoherent scattering (pp. 659-660) | html | pdf |
- 7.4.3.4. Plasmon, Raman, and resonant Raman scattering (pp. 660-661) | html | pdf |
- 7.4.3.5. Magnetic scattering (p. 661) | html | pdf |
- 7.4.4. White radiation and other sources of background (pp. 661-665) | html | pdf |
- 7.4.4.1. Introduction (p. 661) | html | pdf |
- 7.4.4.2. Incident beam and sample (pp. 661-663) | html | pdf |
- 7.4.4.3. Detecting system (pp. 663-664) | html | pdf |
- 7.4.4.4. Powder diffraction (pp. 664-665) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 7.4.3.1. The energy transfer, in eV, in the Compton scattering process for selected X-ray energies (p. 657) | html | pdf |
- Table 7.4.3.2. The incoherent scattering function for elements up to Z = 55 (p. 658) | html | pdf |
- Table 7.4.3.3. Compton scattering of Mo Kα X-radiation through 170° from 2s electrons (p. 659) | html | pdf |
- 7.5. Statistical fluctuations (pp. 666-676) | html | pdf | chapter contents |
- 7.5.1. Distributions of intensities of diffraction (p. 666) | html | pdf |
- 7.5.2. Counting modes (p. 666) | html | pdf |
- 7.5.3. Fixed-time counting (pp. 666-667) | html | pdf |
- 7.5.4. Fixed-count timing (p. 667) | html | pdf |
- 7.5.5. Complicating phenomena (p. 667) | html | pdf |
- 7.5.5.1. Dead time (p. 667) | html | pdf |
- 7.5.5.2. Voltage fluctuations (p. 667) | html | pdf |
- 7.5.6. Treatment of measured-as-negative (and other weak) intensities (p. 667) | html | pdf |
- 7.5.7. Optimization of counting times (pp. 667-668) | html | pdf |
- References
| html | pdf |
- Refinement of structural parameters
- 8.1. Least squares (pp. 678-688) | html | pdf | chapter contents |
- 8.1.1. Definitions (pp. 678-680) | html | pdf |
- 8.1.1.1. Linear algebra (pp. 678-679) | html | pdf |
- 8.1.1.2. Statistics (pp. 679-680) | html | pdf |
- 8.1.2. Principles of least squares (pp. 680-681) | html | pdf |
- 8.1.3. Implementation of linear least squares (pp. 681-682) | html | pdf |
- 8.1.3.1. Use of the QR factorization (pp. 681-682) | html | pdf |
- 8.1.3.2. The normal equations (p. 682) | html | pdf |
- 8.1.3.3. Conditioning (p. 682) | html | pdf |
- 8.1.4. Methods for nonlinear least squares (pp. 682-685) | html | pdf |
- 8.1.4.1. The Gauss–Newton algorithm (p. 683) | html | pdf |
- 8.1.4.2. Trust-region methods – the Levenberg–Marquardt algorithm (p. 683) | html | pdf |
- 8.1.4.3. Quasi-Newton, or secant, methods (pp. 683-684) | html | pdf |
- 8.1.4.4. Stopping rules (pp. 684-685) | html | pdf |
- 8.1.4.5. Recommendations (p. 685) | html | pdf |
- 8.1.5. Numerical methods for large-scale problems (pp. 685-687) | html | pdf |
- 8.1.5.1. Methods for sparse matrices (pp. 685-686) | html | pdf |
- 8.1.5.2. Conjugate-gradient methods (pp. 686-687) | html | pdf |
- 8.1.6. Orthogonal distance regression (pp. 687-688) | html | pdf |
- 8.1.7. Software for least-squares calculations (p. 688) | html | pdf |
- References
| html | pdf |
- 8.2. Other refinement methods (pp. 689-692) | html | pdf | chapter contents |
- 8.2.1. Maximum-likelihood methods (p. 689) | html | pdf |
- 8.2.2. Robust/resistant methods (pp. 689-691) | html | pdf |
- 8.2.3. Entropy maximization (pp. 691-692) | html | pdf |
- 8.2.3.1. Introduction (p. 691) | html | pdf |
- 8.2.3.2. Some examples (pp. 691-692) | html | pdf |
- References
| html | pdf |
- 8.3. Constraints and restraints in refinement (pp. 694-701) | html | pdf | chapter contents |
- 8.3.1. Constrained models (pp. 693-698) | html | pdf |
- 8.3.1.1. Lagrange undetermined multipliers (p. 693) | html | pdf |
- 8.3.1.2. Direct application of constraints (pp. 693-698) | html | pdf |
- 8.3.2. Stereochemically restrained least-squares refinement (pp. 698-701) | html | pdf |
- 8.3.2.1. Stereochemical constraints as observational equations (pp. 698-701) | html | pdf |
- References
| html | pdf |
- Tables
- Table 8.3.1.1. Symmetry conditions for second-cumulant tensors (pp. 695-696) | html | pdf |
- Table 8.3.2.1. Coordinates of atoms (in Å) in standard groups appearing in polypeptides and proteins (pp. 699-700) | html | pdf |
- Table 8.3.2.2. Ideal values for distances (Å), torsion angles (°), etc. for a glycine–alanine dipeptide with a trans peptide bond (p. 700) | html | pdf |
- Table 8.3.2.3. Typical values of standard deviations for use in determining weights in restrained refinement of protein structures (p. 701) | html | pdf |
- 8.4. Statistical significance tests (pp. 702-706) | html | pdf | chapter contents |
- 8.4.1. The χ2 distribution (pp. 702-703) | html | pdf |
- 8.4.2. The F distribution (pp. 703-704) | html | pdf |
- 8.4.3. Comparison of different models (pp. 704-705) | html | pdf |
- 8.4.4. Influence of individual data points (pp. 705-706) | html | pdf |
- References
| html | pdf |
- Tables
- Table 8.4.1.1. Values of χ2/ν for which the c.d.f. ψ(χ2, ν) has the values given in the column headings, for various values of ν (p. 703) | html | pdf |
- Table 8.4.2.1. Values of the F ratio for which the c.d.f. ψ(F, ν1, ν2) has the value 0.95, for various choices of ν1 and ν2 (p. 704) | html | pdf |
- Table 8.4.3.1. Values of t for which the c.d.f. Ψ(t, ν) has the values given in the column headings, for various values of ν (p. 704) | html | pdf |
- 8.5. Detection and treatment of systematic error (pp. 707-709) | html | pdf | chapter contents |
- 8.5.1. Accuracy (p. 707) | html | pdf |
- 8.5.2. Lack of fit (pp. 707-708) | html | pdf |
- 8.5.3. Influential data points (p. 708) | html | pdf |
- 8.5.4. Plausibility of results (p. 709) | html | pdf |
- References
| html | pdf |
- 8.6. The Rietveld method (pp. 710-712) | html | pdf | chapter contents |
- 8.6.1. Basic theory (pp. 710-711) | html | pdf |
- 8.6.2. Problems with the Rietveld method (pp. 711-712) | html | pdf |
- 8.6.2.1. Indexing (p. 711) | html | pdf |
- 8.6.2.2. Peak-shape function (PSF) (p. 711) | html | pdf |
- 8.6.2.3. Background (p. 711) | html | pdf |
- 8.6.2.4. Preferred orientation and texture (p. 712) | html | pdf |
- 8.6.2.5. Statistical validity (p. 712) | html | pdf |
- References
| html | pdf |
- 8.7. Analysis of charge and spin densities (pp. 713-734) | html | pdf | chapter contents |
- 8.7.1. Outline of this chapter (p. 713) | html | pdf |
- 8.7.2. Electron densities and the n-particle wavefunction (p. 713) | html | pdf |
- 8.7.3. Charge densities (pp. 714-725) | html | pdf |
- 8.7.3.1. Introduction (p. 714) | html | pdf |
- 8.7.3.2. Modelling of the charge density (pp. 714-715) | html | pdf |
- 8.7.3.3. Physical constraints (p. 715) | html | pdf |
- 8.7.3.3.1. Electroneutrality constraint (p. 715) | html | pdf |
- 8.7.3.3.2. Cusp constraint (p. 715) | html | pdf |
- 8.7.3.3.3. Radial constraint (p. 715) | html | pdf |
- 8.7.3.3.4. Hellmann–Feynman constraint (p. 715) | html | pdf |
- 8.7.3.4. Electrostatic moments and the potential due to a charge distribution (pp. 716-721) | html | pdf |
- 8.7.3.4.1. Moments of a charge distribution (pp. 716-718) | html | pdf |
- 8.7.3.4.1.1. Moments as a function of the atomic multipole expansion (pp. 716-717) | html | pdf |
- 8.7.3.4.1.2. Molecular moments based on the deformation density (p. 717) | html | pdf |
- 8.7.3.4.1.3. The effect of an origin shift on the outer moments (pp. 717-718) | html | pdf |
- 8.7.3.4.1.4. Total moments as a sum over the pseudoatom moments (p. 718) | html | pdf |
- 8.7.3.4.1.5. Electrostatic moments of a subvolume of space by Fourier summation (p. 718) | html | pdf |
- 8.7.3.4.2. The electrostatic potential (pp. 718-720) | html | pdf |
- 8.7.3.4.2.1. The electrostatic potential and its derivatives (pp. 718-719) | html | pdf |
- 8.7.3.4.2.2. Electrostatic potential outside a charge distribution (p. 720) | html | pdf |
- 8.7.3.4.2.3. Evaluation of the electrostatic functions in direct space (p. 720) | html | pdf |
- 8.7.3.4.3. Electrostatic functions of crystals by modified Fourier summation (pp. 720-721) | html | pdf |
- 8.7.3.4.4. The total energy of a crystal as a function of the electron density (p. 721) | html | pdf |
- 8.7.3.5. Quantitative comparison with theory (pp. 721-722) | html | pdf |
- 8.7.3.6. Occupancies of transition-metal valence orbitals from multipole coefficients (pp. 722-723) | html | pdf |
- 8.7.3.7. Thermal smearing of theoretical densities (pp. 723-724) | html | pdf |
- 8.7.3.7.1. General considerations (p. 723) | html | pdf |
- 8.7.3.7.2. Reciprocal-space averaging over external vibrations (pp. 723-724) | html | pdf |
- 8.7.3.8. Uncertainties in experimental electron densities (pp. 724-725) | html | pdf |
- 8.7.3.9. Uncertainties in derived functions (p. 725) | html | pdf |
- 8.7.4. Spin densities (pp. 725-734) | html | pdf |
- 8.7.4.1. Introduction (p. 725) | html | pdf |
- 8.7.4.2. Magnetization densities from neutron magnetic elastic scattering (pp. 725-726) | html | pdf |
- 8.7.4.3. Magnetization densities and spin densities (pp. 726-727) | html | pdf |
- 8.7.4.3.1. Spin-only density at zero temperature (p. 726) | html | pdf |
- 8.7.4.3.2. Thermally averaged spin-only magnetization density (pp. 726-727) | html | pdf |
- 8.7.4.3.3. Spin density for an assembly of localized systems (p. 727) | html | pdf |
- 8.7.4.3.4. Orbital magnetization density (p. 727) | html | pdf |
- 8.7.4.4. Probing spin densities by neutron elastic scattering (pp. 727-729) | html | pdf |
- 8.7.4.4.1. Introduction (pp. 727-728) | html | pdf |
- 8.7.4.4.2. Unpolarized neutron scattering (p. 728) | html | pdf |
- 8.7.4.4.3. Polarized neutron scattering (p. 728) | html | pdf |
- 8.7.4.4.4. Polarized neutron scattering of centrosymmetric crystals (p. 728) | html | pdf |
- 8.7.4.4.5. Polarized neutron scattering in the noncentrosymmetric case (p. 728) | html | pdf |
- 8.7.4.4.6. Effect of extinction (pp. 728-729) | html | pdf |
- 8.7.4.4.7. Error analysis (p. 729) | html | pdf |
- 8.7.4.5. Modelling the spin density (pp. 729-730) | html | pdf |
- 8.7.4.5.1. Atom-centred expansion (pp. 729-730) | html | pdf |
- 8.7.4.5.1.1. Spherical-atom model (p. 729) | html | pdf |
- 8.7.4.5.1.2. Crystal-field approximation (pp. 729-730) | html | pdf |
- 8.7.4.5.1.3. Scaling of the spin density (p. 730) | html | pdf |
- 8.7.4.5.2. General multipolar expansion (p. 730) | html | pdf |
- 8.7.4.5.3. Other types of model (p. 730) | html | pdf |
- 8.7.4.6. Orbital contribution to the magnetic scattering (pp. 730-731) | html | pdf |
- 8.7.4.6.1. The dipolar approximation (p. 731) | html | pdf |
- 8.7.4.6.2. Beyond the dipolar approximation (p. 731) | html | pdf |
- 8.7.4.6.3. Electronic structure of rare-earth elements (p. 731) | html | pdf |
- 8.7.4.7. Properties derivable from spin densities (pp. 731-732) | html | pdf |
- 8.7.4.7.1. Vector fields (p. 732) | html | pdf |
- 8.7.4.7.2. Moments of the magnetization density (p. 732) | html | pdf |
- 8.7.4.8. Comparison between theory and experiment (p. 732) | html | pdf |
- 8.7.4.9. Combined charge- and spin-density analysis (p. 732) | html | pdf |
- 8.7.4.10. Magnetic X-ray scattering separation between spin and orbital magnetism (pp. 733-734) | html | pdf |
- 8.7.4.10.1. Introduction (p. 733) | html | pdf |
- 8.7.4.10.2. Magnetic X-ray structure factor as a function of photon polarization (pp. 733-734) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 8.7.3.1. Definition of difference density functions (p. 714) | html | pdf |
- Table 8.7.3.2. Expressions for the shape factors S for a parallelepiped with edges δx, δy, and δz (p. 719) | html | pdf |
- Table 8.7.3.3. The matrix M−1 relating d-orbital occupancies Pij to multipole populations Plm (p. 722) | html | pdf |
- Table 8.7.3.4. Orbital–multipole relations for square-planar complexes (point group D4h) (p. 723) | html | pdf |
- Table 8.7.3.5. Orbital–multipole relations for trigonal complexes (p. 723) | html | pdf |
- 8.8. Accurate structure-factor determination with electron diffraction (pp. 735-743) | html | pdf | chapter contents |
- Basic structural features
- 9.1. Sphere packings and packings of ellipsoids (pp. 746-751) | html | pdf | chapter contents |
- 9.1.1. Sphere packings and packings of circles (pp. 746-751) | html | pdf |
- 9.1.1.1. Definitions (p. 746) | html | pdf |
- 9.1.1.2. Homogeneous packings of circles (p. 746) | html | pdf |
- 9.1.1.3. Homogeneous sphere packings (pp. 746-750) | html | pdf |
- 9.1.1.4. Applications (pp. 750-751) | html | pdf |
- 9.1.1.5. Interpenetrating sphere packings (p. 751) | html | pdf |
- 9.1.2. Packings of ellipses and ellipsoids (p. 751) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.1.1.1. Types of circle packings in the plane (p. 747) | html | pdf |
- Table 9.1.1.2. Examples for sphere packings with high contact numbers and high densities and with low contact numbers and low densities (p. 748) | html | pdf |
- 9.2. Layer stacking (pp. 752-773) | html | pdf | chapter contents |
- 9.2.1. Layer stacking in close-packed structures (pp. 752-760) | html | pdf |
- 9.2.1.1. Close packing of equal spheres (pp. 752-753) | html | pdf |
- 9.2.1.1.1. Close-packed layer (p. 752) | html | pdf |
- 9.2.1.1.2. Close-packed structures (p. 752) | html | pdf |
- 9.2.1.1.3. Notations for close-packed structures (pp. 752-753) | html | pdf |
- 9.2.1.2. Structure of compounds based on close-packed layer stackings (pp. 753-755) | html | pdf |
- 9.2.1.2.1. Voids in close packing (p. 753) | html | pdf |
- 9.2.1.2.2. Structures of SiC and ZnS (pp. 753-754) | html | pdf |
- 9.2.1.2.3. Structure of CdI2 (p. 754) | html | pdf |
- 9.2.1.2.4. Structure of GaSe (pp. 754-755) | html | pdf |
- 9.2.1.3. Symmetry of close-packed layer stackings of equal spheres (p. 755) | html | pdf |
- 9.2.1.4. Possible lattice types (p. 755) | html | pdf |
- 9.2.1.5. Possible space groups (pp. 755-756) | html | pdf |
- 9.2.1.6. Crystallographic uses of Zhdanov symbols (p. 756) | html | pdf |
- 9.2.1.7. Structure determination of close-packed layer stackings (pp. 756-758) | html | pdf |
- 9.2.1.7.1. General considerations (p. 756) | html | pdf |
- 9.2.1.7.2. Determination of the lattice type (p. 757) | html | pdf |
- 9.2.1.7.3. Determination of the identity period (p. 757) | html | pdf |
- 9.2.1.7.4. Determination of the stacking sequence of layers (pp. 757-758) | html | pdf |
- 9.2.1.8. Stacking faults in close-packed structures (pp. 758-760) | html | pdf |
- 9.2.1.8.1. Structure determination of one-dimensionally disordered crystals (pp. 759-760) | html | pdf |
- 9.2.2. Layer stacking in general polytypic structures (pp. 760-773) | html | pdf |
- 9.2.2.1. The notion of polytypism (pp. 760-761) | html | pdf |
- 9.2.2.2. Symmetry aspects of polytypism (pp. 761-766) | html | pdf |
- 9.2.2.2.1. Close packing of spheres (p. 761) | html | pdf |
- 9.2.2.2.2. Polytype families and OD groupoid families (pp. 761-762) | html | pdf |
- 9.2.2.2.3. MDO polytypes (p. 762) | html | pdf |
- 9.2.2.2.4. Some geometrical properties of OD structures (pp. 762-763) | html | pdf |
- 9.2.2.2.5. Diffraction pattern – structure analysis (p. 763) | html | pdf |
- 9.2.2.2.6. The vicinity condition (pp. 763-764) | html | pdf |
- 9.2.2.2.7. Categories of OD structures (pp. 764-765) | html | pdf |
- 9.2.2.2.7.1. OD structures of equivalent layers (pp. 764-765) | html | pdf |
- 9.2.2.2.7.2. OD structures with more than one kind of layer (p. 765) | html | pdf |
- 9.2.2.2.8. Desymmetrization of OD structures (pp. 765-766) | html | pdf |
- 9.2.2.2.9. Concluding remarks (p. 766) | html | pdf |
- 9.2.2.3. Examples of some polytypic structures (pp. 766-772) | html | pdf |
- 9.2.2.3.1. Hydrous phyllosilicates (pp. 766-769) | html | pdf |
- 9.2.2.3.1.1. General geometry (pp. 767-769) | html | pdf |
- 9.2.2.3.1.2. Diffraction pattern and identification of individual polytypes (p. 769) | html | pdf |
- 9.2.2.3.2. Stibivanite Sb2VO5 (pp. 769-771) | html | pdf |
- 9.2.2.3.3. γ-Hg3S2Cl2 (pp. 771-772) | html | pdf |
- 9.2.2.3.4. Remarks for authors (p. 772) | html | pdf |
- 9.2.2.4. List of some polytypic structures (pp. 772-773) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.2.1.1. Common close-packed metallic structures (p. 753) | html | pdf |
- Table 9.2.1.2. List of SiC polytypes with known structures in order of increasing periodicity (p. 754) | html | pdf |
- Table 9.2.1.3. Intrinsic fault configurations in the 6H (A0B1C2A3C4B5;. . .) structure (p. 758) | html | pdf |
- Table 9.2.1.4. Intrinsic fault configurations in the 9R (A0B1A2C0A1C2B0C1B2;. . .) structure (p. 759) | html | pdf |
- 9.4. Typical interatomic distances: inorganic compounds (pp. 778-789) | html | pdf | chapter contents |
- 9.4.1. Introduction (p. 778) | html | pdf |
- 9.4.2. The retrieval system (p. 778) | html | pdf |
- 9.4.3. Interpretation of frequency distributions (p. 778) | html | pdf |
- References
| html | pdf |
- Tables
- Table 9.4.1.1. Atomic distances between halogens and main-group elements in their preferred oxidation states (pp. 779-780) | html | pdf |
- Table 9.4.1.2. Atomic distances between halogens and main-group elements in their special oxidation states (pp. 780-781) | html | pdf |
- Table 9.4.1.3. Atomic distances between halogens and transition metals (pp. 781-784) | html | pdf |
- Table 9.4.1.4. Atomic distances between halogens and lanthanoids (p. 784) | html | pdf |
- Table 9.4.1.5. Atomic distances between halogens and actinoids (p. 785) | html | pdf |
- Table 9.4.1.6. Atomic distances between oxygen and main-group elements in their preferred oxidation states (p. 785) | html | pdf |
- Table 9.4.1.7. Atomic distances between oxygen and main-group elements in their special oxidation states (p. 786) | html | pdf |
- Table 9.4.1.8. Atomic distances between oxygen and transition elements in their preferred and special oxidation states (pp. 786-787) | html | pdf |
- Table 9.4.1.9. Atomic distances between oxygen and lanthanoids (p. 787) | html | pdf |
- Table 9.4.1.10. Atomic distances between oxygen and actinoids (p. 788) | html | pdf |
- Table 9.4.1.11. Atomic distances in sulfides and thiometallates (pp. 788-789) | html | pdf |
- Table 9.4.1.12. Contact distances between some negatively charged elements (p. 789) | html | pdf |
- 9.5. Typical interatomic distances: organic compounds (pp. 790-811) | html | pdf | chapter contents |
- 9.5.1. Introduction (p. 790) | html | pdf |
- 9.5.2. Methodology (pp. 790-791) | html | pdf |
- 9.5.2.1. Selection of crystallographic data (p. 790) | html | pdf |
- 9.5.2.2. Program system (pp. 790-791) | html | pdf |
- 9.5.2.3. Classification of bonds (p. 791) | html | pdf |
- 9.5.2.4. Statistics (p. 791) | html | pdf |
- 9.5.3. Content and arrangement of the table (pp. 791-794) | html | pdf |
- 9.5.3.1. Ordering of entries: the `Bond' column (p. 792) | html | pdf |
- 9.5.3.2. Definition of `Substructure' (pp. 792-793) | html | pdf |
- 9.5.3.3. Use of the `Note' column (pp. 793-794) | html | pdf |
- 9.5.4. Discussion (p. 794) | html | pdf |
- Appendix 9.5.1. Notes to Table 9.5.1.1 (p. 794) | html | pdf |
- Appendix 9.5.2. Short-form references to individual CSD entries cited by reference code in Table 9.5.1.1 (pp. 794-795) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.5.1.1. Average lengths (Å) for bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I (pp. 796-811) | html | pdf |
- 9.6. Typical interatomic distances: organometallic compounds and coordination complexes of the d- and f-block metals (pp. 812-896) | html | pdf | chapter contents |
- 9.6.1. Introduction (p. 812) | html | pdf |
- 9.6.2. Methodology (pp. 812-814) | html | pdf |
- 9.6.2.1. Selection of crystallographic data (p. 812) | html | pdf |
- 9.6.2.2. Program system (p. 813) | html | pdf |
- 9.6.2.3. Classification of bonds (p. 813) | html | pdf |
- 9.6.2.4. Statistics (pp. 813-814) | html | pdf |
- 9.6.3. Content and arrangement of table of interatomic distances (pp. 814-818) | html | pdf |
- 9.6.3.1. The `Bond' column (p. 815) | html | pdf |
- 9.6.3.2. Definition of `Substructure' (pp. 815-817) | html | pdf |
- 9.6.3.3. Use of the `Note' column (pp. 817-818) | html | pdf |
- 9.6.3.4. Locating an entry in Table 9.6.3.3 (p. 818) | html | pdf |
- 9.6.4. Discussion (pp. 818-884) | html | pdf |
- Appendix 9.6.1. Notes and references to Tables 9.6.3.2 and 9.6.3.3 (pp. 884-886) | html | pdf |
- Appendix 9.6.2. Short-form references to individual CSD entries cited in Table 9.6.3.3 (pp. 886-896) | html | pdf |
- References
| html | pdf |
- Figures
- Tables
- Table 9.6.3.1. Ligand index (pp. 814-815) | html | pdf |
- Table 9.6.3.2. Numbers of entries in Table 9.6.3.3 (p. 817) | html | pdf |
- Table 9.6.3.3. Interatomic distances (Å) (pp. 818-883) | html | pdf |
- 9.7. The space-group distribution of molecular organic structures (pp. 897-906) | html | pdf | chapter contents |
- 9.7.1. A priori classifications of space groups (pp. 897-900) | html | pdf |
- 9.7.1.1. Kitajgorodskij's categories (p. 897) | html | pdf |
- 9.7.1.2. Symmorphism and antimorphism (pp. 897-899) | html | pdf |
- 9.7.1.3. Comparison of Kitajgorodskij's and Wilson's classifications (pp. 899-900) | html | pdf |
- 9.7.1.4. Relation to structural classes (p. 900) | html | pdf |
- 9.7.2. Special positions of given symmetry (pp. 900-902) | html | pdf |
- 9.7.3. Empirical space-group frequencies (p. 902) | html | pdf |
- 9.7.4. Use of molecular symmetry (pp. 902-904) | html | pdf |
- 9.7.4.1. Positions with symmetry 1 (p. 902) | html | pdf |
- 9.7.4.2. Positions with symmetry (pp. 902-903) | html | pdf |
- 9.7.4.3. Other symmetries (p. 903) | html | pdf |
- 9.7.4.4. Positions with the full symmetry of the geometric class (pp. 903-904) | html | pdf |
- 9.7.5. Structural classes (p. 904) | html | pdf |
- 9.7.6. A statistical model (p. 904) | html | pdf |
- 9.7.7. Molecular packing (pp. 904-906) | html | pdf |
- 9.7.7.1. Relation to sphere packing (pp. 904-906) | html | pdf |
- 9.7.7.2. The hydrogen bond and the definition of the packing units (p. 906) | html | pdf |
- 9.7.8. A priori predictions of molecular crystal structures (p. 906) | html | pdf |
- References
| html | pdf |
- Tables
- Table 9.7.1.1. Kitajgorodskij's categorization of the triclinic, monoclinic and orthorhombic space groups, as modified by Wilson (1993a) (p. 898) | html | pdf |
- Table 9.7.1.2. Space groups arranged by arithmetic crystal class and degree of symmorphism (Wilson, 1993d), as frequented by homomolecular structures with one molecule in the general position (in superscript numerals; according to Belsky, Zorkaya & Zorky, 1995) (pp. 899-901) | html | pdf |
- Table 9.7.2.1. Statistics of the use of Wyckoff positions of specified symmetry in the homomolecular organic crystals, based on the data by Belsky, Zorkaya & Zorky (1995) (p. 903) | html | pdf |
- Table 9.7.4.1. Occurrence of molecules with specified point group in centred symmorphic and other space groups, based on the statistics by Belsky, Zorkaya & Zorky (1995) (p. 905) | html | pdf |
- 9.8. Incommensurate and commensurate modulated structures (pp. 907-955) | html | pdf | chapter contents |
- 9.8.1. Introduction (pp. 907-913) | html | pdf |
- 9.8.1.1. Modulated crystal structures (pp. 907-908) | html | pdf |
- 9.8.1.2. The basic ideas of higher-dimensional crystallography (pp. 908-909) | html | pdf |
- 9.8.1.3. The simple case of a displacively modulated crystal (pp. 909-910) | html | pdf |
- 9.8.1.3.1. The diffraction pattern (p. 909) | html | pdf |
- 9.8.1.3.2. The symmetry (pp. 909-910) | html | pdf |
- 9.8.1.4. Basic symmetry considerations (pp. 910-913) | html | pdf |
- 9.8.1.4.1. Bravais classes of vector modules (pp. 910-911) | html | pdf |
- 9.8.1.4.2. Description in four dimensions (p. 911) | html | pdf |
- 9.8.1.4.3. Four-dimensional crystallography (pp. 911-912) | html | pdf |
- 9.8.1.4.4. Generalized nomenclature (p. 912) | html | pdf |
- 9.8.1.4.5. Four-dimensional space groups (pp. 912-913) | html | pdf |
- 9.8.1.5. Occupation modulation (p. 913) | html | pdf |
- 9.8.2. Outline for a superspace-group determination (pp. 913-915) | html | pdf |
- 9.8.3. Introduction to the tables (pp. 915-937) | html | pdf |
- 9.8.3.1. Tables of Bravais lattices (pp. 915-916) | html | pdf |
- 9.8.3.2. Table for geometric and arithmetic crystal classes (p. 916) | html | pdf |
- 9.8.3.3. Tables of superspace groups (pp. 916-935) | html | pdf |
- 9.8.3.3.1. Symmetry elements (pp. 916-921) | html | pdf |
- 9.8.3.3.2. Reflection conditions (pp. 921-935) | html | pdf |
- 9.8.3.4. Guide to the use of the tables (pp. 935-936) | html | pdf |
- 9.8.3.5. Examples (p. 936) | html | pdf |
- 9.8.3.6. Ambiguities in the notation (pp. 936-937) | html | pdf |
- 9.8.4. Theoretical foundation (pp. 937-945) | html | pdf |
- 9.8.4.1. Lattices and metric (pp. 937-938) | html | pdf |
- 9.8.4.2. Point groups (pp. 938-939) | html | pdf |
- 9.8.4.2.1. Laue class (pp. 938-939) | html | pdf |
- 9.8.4.2.2. Geometric and arithmetic crystal classes (p. 939) | html | pdf |
- 9.8.4.3. Systems and Bravais classes (pp. 939-940) | html | pdf |
- 9.8.4.3.1. Holohedry (pp. 939-940) | html | pdf |
- 9.8.4.3.2. Crystallographic systems (p. 940) | html | pdf |
- 9.8.4.3.3. Bravais classes (p. 940) | html | pdf |
- 9.8.4.4. Superspace groups (pp. 940-941) | html | pdf |
- 9.8.4.4.1. Symmetry elements (p. 940) | html | pdf |
- 9.8.4.4.2. Equivalent positions and modulation relations (pp. 940-941) | html | pdf |
- 9.8.4.4.3. Structure factor (p. 941) | html | pdf |
- 9.8.5. Generalizations (pp. 941-943) | html | pdf |
- 9.8.5.1. Incommensurate composite crystal structures (pp. 941-942) | html | pdf |
- 9.8.5.2. The incommensurate versus the commensurate case (pp. 942-943) | html | pdf |
- Appendix 9.8.1. Glossary of symbols (pp. 943-944) | html | pdf |
- Appendix 9.8.2. Basic definitions (pp. 944-945) | html | pdf |
- References
| html | pdf |
- Tables
- Table 9.8.3.1. (2 + 1)- and (2 + 2)-Dimensional Bravais classes for incommensurate structures (pp. 915-916) | html | pdf |
- Table 9.8.3.2. (3 + 1)-Dimensional Bravais classes for incommensurate and commensurate structures (pp. 917-918) | html | pdf |
- Table 9.8.3.3. (3 + 1)-Dimensional point groups and arithmetic crystal classes (pp. 919-920) | html | pdf |
- Table 9.8.3.4. (2 + 1)- and (2 + 2)-Dimensional superspace groups (pp. 920-921) | html | pdf |
- Table 9.8.3.5.
(3 + 1)-Dimensional superspace groupssuperspace group finder (pp. 922-934) | html | pdf |
- Table 9.8.3.6. Centring reflection conditions for (3 + 1)-dimensional Bravais classes (p. 935) | html | pdf |
- Precautions against radiation injury
- 10.1. Introduction (pp. 958-961) | html | pdf | chapter contents |
- 10.1.1. Definitions (pp. 958-960) | html | pdf |
- 10.1.1.1. Ionizing radiation (p. 958) | html | pdf |
- 10.1.1.2. Absorbed dose (p. 958) | html | pdf |
- 10.1.1.3. Activity (p. 958) | html | pdf |
- 10.1.1.4. Adequate protection (p. 958) | html | pdf |
- 10.1.1.5. Background (radiation) (p. 958) | html | pdf |
- 10.1.1.6. Becquerel (Bq) (p. 958) | html | pdf |
- 10.1.1.7. Designated radiation area (p. 958) | html | pdf |
- 10.1.1.8. Dose equivalent (p. 958) | html | pdf |
- 10.1.1.9. Exposure of X-ray or γ-radiation (p. 958) | html | pdf |
- 10.1.1.10. External radiation (p. 958) | html | pdf |
- 10.1.1.11. Glove box (p. 959) | html | pdf |
- 10.1.1.12. Gray (Gy) (p. 959) | html | pdf |
- 10.1.1.13. Half life (p. 959) | html | pdf |
- 10.1.1.14. Internal radiation (p. 959) | html | pdf |
- 10.1.1.15. Irradiating apparatus (p. 959) | html | pdf |
- 10.1.1.16. Leakage radiation (p. 959) | html | pdf |
- 10.1.1.17. Licensable quantity (p. 959) | html | pdf |
- 10.1.1.18. Maximum permissible concentration (p. 959) | html | pdf |
- 10.1.1.19. Natural background (p. 959) | html | pdf |
- 10.1.1.20. Non-stochastic effects (p. 959) | html | pdf |
- 10.1.1.21. Nuclide (p. 959) | html | pdf |
- 10.1.1.22. Occupied area (p. 959) | html | pdf |
- 10.1.1.23. Protective housing (p. 959) | html | pdf |
- 10.1.1.24. Quality factor (QF) (p. 959) | html | pdf |
- 10.1.1.25. Radiation laboratory (p. 959) | html | pdf |
- 10.1.1.26. Radioactive contamination (p. 959) | html | pdf |
- 10.1.1.27. Radioactive material (p. 959) | html | pdf |
- 10.1.1.28. Radioisotope laboratory (p. 959) | html | pdf |
- 10.1.1.29. Radiological hazard (p. 959) | html | pdf |
- 10.1.1.30. Radiological laboratory (p. 959) | html | pdf |
- 10.1.1.31. Radionuclide (p. 959) | html | pdf |
- 10.1.1.32. Radiotoxicity (p. 959) | html | pdf |
- 10.1.1.33. Sealed source (p. 959) | html | pdf |
- 10.1.1.34. Sievert (Sv) (p. 959) | html | pdf |
- 10.1.1.35. Stochastic effects (p. 959) | html | pdf |
- 10.1.1.36. Unsealed source (p. 959) | html | pdf |
- 10.1.1.37. Useful beam (p. 960) | html | pdf |
- 10.1.2. Objectives of radiation protection (p. 960) | html | pdf |
- 10.1.3. Responsibilities (pp. 960-961) | html | pdf |
- 10.1.3.1. General (p. 960) | html | pdf |
- 10.1.3.2. The radiation safety officer (p. 960) | html | pdf |
- 10.1.3.3. The worker (pp. 960-961) | html | pdf |
- 10.1.3.4. Primary-dose limits (p. 961) | html | pdf |
- References
| html | pdf |
- Tables
- Table 10.1.1. The relationship between SI and the earlier system of units (p. 958) | html | pdf |
- Table 10.1.2. Maximum primary-dose limit per quarter [based on National Health and Medical Research Council (1977), as amended] (p. 960) | html | pdf |
- Table 10.1.3. Quality factors (QF) (p. 960) | html | pdf |
- 10.2. Protection from ionizing radiation (pp. 962-963) | html | pdf | chapter contents |
- 10.2.1. General (p. 962) | html | pdf |
- 10.2.2. Sealed sources and radiation-producing apparatus (pp. 962-963) | html | pdf |
- 10.2.2.1. Enclosed installations (p. 962) | html | pdf |
- 10.2.2.2. Open installations (p. 962) | html | pdf |
- 10.2.2.3. Sealed sources (p. 962) | html | pdf |
- 10.2.2.4. X-ray diffraction and X-ray analysis apparatus (p. 962) | html | pdf |
- 10.2.2.5. Particle accelerators (pp. 962-963) | html | pdf |
- 10.2.3. Ionizing-radiation protection – unsealed radioactive materials (p. 963) | html | pdf |
- References
| html | pdf |